Histochemistry and Cell Biology

, Volume 149, Issue 4, pp 305–312 | Cite as

Functions of vitamin D in bone

  • D. Goltzman


Vitamin D, synthesized in the skin or absorbed from the diet, undergoes multi-step enzymatic conversion to its active form, 1,25-dihydroxy vitamin D [1,25(OH)2D], followed by interaction with the vitamin D receptor (VDR), to modulate target gene expression. Loss-of function mutations in the genes encoding the enzymes regulating these processes, or in the VDR, result in human diseases, which have demonstrated the paramount role of 1,25(OH)2D in mineral and skeletal homeostasis. Mouse genetics has been used to create disease phenocopies which have produced considerable insight into the mechanisms of 1,25(OH)2D regulation of mineral and skeletal metabolism. Hypophosphatemia resulting from 1,25(OH)2D deficiency or resistance can inhibit apoptosis in hypertrophic chondrocytes leading to abnormal development of the cartilaginous growth plate in rickets. Decreased 1,25(OH)2D may also cause decreased vascular invasion associated with reduced chondroclast and osteoclast activity and thereby contribute to growth plate abnormalities. Reduced 1,25(OH)2D-mediated intestinal and renal calcium transport can reduce calcium availability, increase parathyroid hormone secretion and phosphaturia, and impair mineral availability for normal matrix mineralization, resulting in reduced growth plate mineralization and osteomalacia. 1,25(OH)2D may exert an anabolic effect in bone, apparently via the VDR in mature osteoblasts, by increasing osteoblast activity and reducing osteoclast activity. High ambient levels of exogenous 1,25(OH)2D, or of elevated endogenous 1,25(OH)2D in the presence of reduced calcium balance, can enhance bone resorption, and apparently prevent mineral deposition in bone. These actions demonstrate the critical role of vitamin D in regulating skeletal homeostasis both indirectly and directly via the 1,25(OH)2D/VDR system.


Vitamin D Mineral homeostasis Cartilaginous growth plate Bone formation Bone resorption 



Funding was provided by Canadian Institutes of Health Research (Grant no. PJT-152963).


  1. al-Aqeel A, Ozand P, Sobki S, Sewairi W, Marx S (1993) The combined use of intravenous and oral calcium for the treatment of vitamin D dependent rickets type II (VDDRII). Clin Endocrinol (Oxf) 39:229–237CrossRefGoogle Scholar
  2. Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513–1520CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987CrossRefPubMedGoogle Scholar
  4. Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res 314:266–280Google Scholar
  5. Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5:222–226CrossRefPubMedGoogle Scholar
  6. Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503CrossRefPubMedGoogle Scholar
  7. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21:319–329CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–3429CrossRefPubMedGoogle Scholar
  9. Chen H, Hewison M, Hu B, Adams JS (2003) Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proc Natl Acad Sci USA 100:6109–6114CrossRefPubMedPubMedCentralGoogle Scholar
  10. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96:365–408CrossRefPubMedGoogle Scholar
  11. Dardenne O, Prud’homme J, Arabian A, Glorieux FH, St-Arnaud R (2001) Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141CrossRefPubMedGoogle Scholar
  12. Dardenne O, Prudhomme J, Hacking SA, Glorieux FH (2003) Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). Bone 32:332–340CrossRefPubMedGoogle Scholar
  13. Donohue MM, Demay MB (2002) Rickets in VDR null mice is secondary to decreased apoptosis of hypertrophic chondrocytes. Endocrinology 143:3691–3694CrossRefPubMedGoogle Scholar
  14. Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, Drake MT, Tchkonia T, LeBrasseur NK, Kirkland JL, Bonewald LF, Pignolo RJ, Monroe DG, Khosla S (2016) Identification of senescent cells in the bone microenvironment. J Bone Miner Res 31:1920–1929CrossRefPubMedPubMedCentralGoogle Scholar
  15. Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I, Haussler MR, Kerr Whitfield G (2011) Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun 414:557–562CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fretz JA, Zella LA, Kim S, Shevde NK, Pike JW (2006) 1,25-Dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol 20:2215–2230CrossRefPubMedGoogle Scholar
  17. Fu GK, Lin D, Zhang MY, Bikle DD, Shackleton CH, Miller WL, Portale AA (1997) Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 11:1961–1970PubMedGoogle Scholar
  18. Gardiner EM, Baldock PA, Thomas GP, Sims NA, Henderson NK, Hollis B, White CP, Sunn KL, Morrison NA, Walsh WR, Eisman JA (2000) Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J 14:1908–1916CrossRefPubMedGoogle Scholar
  19. Kim S, Yamazaki S, Zella LA, Shevde NK, Pike JW (2006) Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 26:6469–6486CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim HJ, Minashima T, McCarthy EF, Winkles JA, Kirsch T (2010) Progressive ankylosis protein (ANK) in osteoblasts and osteoclasts controls bone formation and bone remodeling. J Bone Miner Res 25:1771e1783CrossRefGoogle Scholar
  21. Kim HN, Chang J, Shao L, Han L, Iyer S, Manolagas SC, O’Brien CA, Jilka RL, Zhou D, Almeida M (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16:693–703CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kitazawa R, Mori K, Yamaguchi A, Kondo T, Kitazawa S (2008) Modulation of mouse RANKL gene xpression by Runx2 and vitamin D3. J Cell Biochem 105:1289–1297CrossRefPubMedGoogle Scholar
  23. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94:9831–9835CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB (1998) Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396CrossRefPubMedGoogle Scholar
  25. Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, Lafage-Proust MH, Dresselaers T, Feng JQ, Bonewald LF, Meyer MB, Pike JW, Bouillon R, Carmeliet G (2012) Normocalcemia is maintained in mice under conditions of calcium ma-labsorption by vitamin D-induced inhibition of bone mineralization. J Clin Investig 122:1803–1815CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lin R, Amizuka N, Sasaki T, Aarts MM, Ozawa H, Goltzman D, Henderson JE, White JH (2002) 1Alpha,25-dihydroxyvitamin D3 promotes vascularization of the chondro-osseous junction by stimulating expression of vascular endothelial growth factor and matrix metalloproteinase 9. J Bone Miner Res 17:1604–1612CrossRefPubMedGoogle Scholar
  27. Malloy PJ, Pike JW, Feldman D (1999) The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev 20:156–188PubMedGoogle Scholar
  28. Malloy PJ, Wang J, Peng L, Nayak S, Sisk JM, Thompson CC, Feldman D (2006) A unique insertion/duplication in the VDR gene that truncates the VDR causing hereditary 1,25-dihydroxyvitamin D-resistant rickets without alopecia. Arch Biochem Biophys 460:285–292CrossRefPubMedPubMedCentralGoogle Scholar
  29. Millan JL (2013) The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 93:299–306CrossRefPubMedGoogle Scholar
  30. Nguyen-Yamamoto L, Karaplis AC, St-Arnaud R, Goltzman D (2017) Fibroblast growth factor 23 regulation by systemic and local osteoblast-synthesized 1,25-dihydroxyvitamin D. J Am Soc Nephrol 28:586–597CrossRefPubMedGoogle Scholar
  31. Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, Goltzman D (2001) Targeted ablation of the 25-hydroxyvitamin D 1alpha-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98:7498–7503CrossRefPubMedPubMedCentralGoogle Scholar
  32. Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, Goltzman D (2004) Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 279:16754–16766CrossRefPubMedGoogle Scholar
  33. Pike JW, Christakos S (2017) Biology and mechanisms of action of the vitamin D hormone. Endocrinol Metab Clin N Am 46:815–843CrossRefGoogle Scholar
  34. Roberts S, Narisawa S, Harmey D, Millan JL, Farquharson C (2007) Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization. J Bone Miner Res 22:617–627CrossRefPubMedGoogle Scholar
  35. Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schlingmann KP, Kaufmann M. Weber S et al (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365:410–421CrossRefPubMedGoogle Scholar
  37. Song Y, Peng X, Porta A, Takanaga H, Peng JB, Hediger MA, Fleet JC, Christakos S (2003) Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 144:3885–3894CrossRefPubMedGoogle Scholar
  38. St John HC1, Bishop KA, Meyer MB, Benkusky NA, Leng N, Kendziorski C, Bonewald LF, Pike JW (2014) The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. Mol Endocrinol 28:1150–1165CrossRefPubMedPubMedCentralGoogle Scholar
  39. Staines KA, Zhu D, Farquharson C, MacRae VE (2014) Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J Bone Miner Metab 32:240–251CrossRefPubMedGoogle Scholar
  40. St-Arnaud R, Arabian A, Travers R, Barletta F, Raval-Pandya M, Chapin K, Depovere J, Mathieu C, Christakos S, Demay MB, Glorieux FH (2000) Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology 141:2658–2666CrossRefPubMedGoogle Scholar
  41. Stewart AJ, Roberts SJ, Seawright E, Davey MG, Fleming RH, Farquharson C (2006) The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone 39:1000–1007CrossRefPubMedGoogle Scholar
  42. Streeten EA, Zarbalian K, Damcott CM (2011) CYP24A1 mutations in idiopathic infantile hypercalcemia. N Engl J Med 365:1741–1742CrossRefPubMedGoogle Scholar
  43. Thacher TD, Fischer PR, Singh RJ, Roizen J, Levine MA (2015) CYP2R1 mutations impair generation of 25-hydroxyvitamin D and cause an atypical form of vitamin D deficiency. J Clin Endocrinol Metab 100:E1005–E1013CrossRefPubMedPubMedCentralGoogle Scholar
  44. Thouverey C, Malinowska A, Balcerzak M, Strzelecka-Kiliszek A, Buchet R, Dadlez M, Pikula S (2011) Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells. J Proteom 74:1123–1134CrossRefGoogle Scholar
  45. Tiosano D, Hadad S, Chen Z, Nemirovsky A, Gepstein V, Militianu D, Weisman Y, Abrams SA (2011) Calcium absorption, kinetics, bone density, and bone structure in patients with hereditary vitamin D-resistant rickets. J Clin Endocrinol Metab 96:3701–3709CrossRefPubMedGoogle Scholar
  46. Triliana R, Lam NN, Sawyer RK, Atkins GJ, Morris HA, Anderson PH (2016) Skeletal characterization of an osteoblast-specific vitamin D receptor transgenic (ObVDR-B6) mouse model. J Steroid Biochem Mol Biol 164:331–336CrossRefPubMedGoogle Scholar
  47. van Driel M, van Leeuwen JPTM. (2017) Vitamin D endocrinology of bone mineralization. Mol Cell Endocrinol 453:46–51CrossRefPubMedGoogle Scholar
  48. Van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ (2003) Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am J Physiol Gastrointest Liver Physiol 285:G78–G85CrossRefPubMedGoogle Scholar
  49. Xiao Z, Camalier CE, Nagashima K, Chan KC, Lucas DA, de la Cruz MJ, Gignac M, Lockett S, Issaq HJ, Veenstra TD, Conrads TP, Beck GR Jr (2007) Analysis of the extracellular matrix vesicle proteome in mineralizing osteo-blasts. J Cell Physiol 210:325–335CrossRefPubMedGoogle Scholar
  50. Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D (2005) Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Hum Mol Genet 14:1515–1528CrossRefPubMedGoogle Scholar
  51. Yadav MC, Simao AM, Narisawa S, Huesa C, McKee MD, Farquharson C, Millan JL (2011) Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 26:286–297CrossRefPubMedGoogle Scholar
  52. Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, Sato T, Kawano H, Aihara K, Nakamichi Y, Watanabe T, Shindo M, Inoue K, Inoue E, Tsuji N, Hoshino M, Karsenty G, Metzger D, Chambon P, Kato S, Imai Y (2013) Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154:1008–1020CrossRefPubMedGoogle Scholar
  53. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Alioka K, Sato H, Uchiyama Y, Masushige S, Fukamizu A, Matsumoto T, Kato S (1997) Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 16:391–396CrossRefPubMedGoogle Scholar
  54. Zhu JG, Ochalek JT, Kaufmann M, Jones G, Deluca HF (2013) CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci USA 110:15650–15655CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineMcGill UniversityMontrealCanada
  2. 2.Department of PhysiologyMcGill UniversityMontrealCanada
  3. 3.Department of MedicineMcGill University Health CentreMontrealCanada

Personalised recommendations