Histochemistry and Cell Biology

, Volume 147, Issue 3, pp 377–388 | Cite as

Development of a multilayered palate substitute in rabbits: a histochemical ex vivo and in vivo analysis

  • M. A. Martín-Piedra
  • M. Alaminos
  • R. Fernández-Valadés-Gámez
  • A. España-López
  • E. Liceras-Liceras
  • I. Sánchez-Montesinos
  • A. Martínez-Plaza
  • M. C. Sánchez-Quevedo
  • R. Fernández-Valadés
  • I. Garzón
Original Paper

Abstract

Current tissue engineering technology focuses on developing simple tissues, whereas multilayered structures comprising several tissue types have rarely been described. We developed a highly biomimetic multilayered palate substitute with bone and oral mucosa tissues using rabbit cells and biomaterials subjected to nanotechnological techniques based on plastic compression. This novel palate substitute was autologously grafted in vivo, and histological and histochemical analyses were used to evaluate biointegration, cell function, and cell differentiation in the multilayered palate substitute. The three-dimensional structure of the multilayered palate substitute was histologically similar to control tissues, but the ex vivo level of cell and tissue differentiation were low as determined by the absence of epithelial differentiation although cytokeratins 4 and 13 were expressed. In vivo grafting was associated with greater cell differentiation, epithelial stratification, and maturation, but the expression of cytokeratins 4, 13, 5, and 19 at did not reach control tissue levels. Histochemical analysis of the oral mucosa stroma and bone detected weak signals for proteoglycans, elastic and collagen fibers, mineralization deposits and osteocalcin in the multilayered palate substitute cultured ex vivo. However, in vivo grafting was able to induce cell and tissue differentiation, although the expression levels of these components were always significantly lower than those found in controls, except for collagen in the bone layer. These results suggest that generation of a full-thickness multilayered palate substitute is achievable and that tissues become partially differentiated upon in vivo grafting.

Keywords

Cleft palate Tissue engineering Nanostructuration Bone Oral mucosa 

Notes

Acknowledgments

This study was supported by the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I + D+I) from the Spanish Ministry of Economy and Competitiveness (Instituto de Salud Carlos III), grants FIS PI14/2110 and FIS PI15/2048 (co-financed by ERDF-FEDER, European Union) and by grant SAS PI-0386-2014 from the Fundación Progreso y Salud, Junta de Andalucia, Spain. This work is part of the PhD thesis prepared by R. Fernández-Valadés-Gámez. The authors thank Amalia de la Rosa and Concha López and the Experimental Unit of the Virgen de las Nieves University Hospital for their support with the surgical procedures, and K. Shashok for improving the use of English in the manuscript.

References

  1. Alaminos M, Garzon I, Sanchez-Quevedo MC, Moreu G, Gonzalez-Andrades M, Fernandez-Montoya A, Campos A (2007) Time-course study of histological and genetic patterns of differentiation in human engineered oral mucosa. J Tissue Eng Regen Med 1(5):350–359CrossRefPubMedGoogle Scholar
  2. Alfonso-Rodriguez CA, Gonzalez-Andrades E, Jaimes-Parra BD, Fernandez-Valades R, Campos A, Sanchez-Quevedo MC, Alaminos M, Garzon I (2015) Ex vivo and in vivo modulatory effects of umbilical cord Wharton’s jelly stem cells on human oral mucosa stroma substitutes. Histol Histopathol 30(11):1321–1332PubMedGoogle Scholar
  3. Brouwer KM, Lundvig DM, Middelkoop E, Wagener FA, Von den Hoff JW (2015) Mechanical cues in orofacial tissue engineering and regenerative medicine. Wound Repair Regen 23(3):302–311CrossRefPubMedGoogle Scholar
  4. Carriel V, Garzon I, Campos A, Cornelissen M, Alaminos M (2014) Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits. J Tissue Eng Regen Med. doi: 10.1002/term.1949 PubMedGoogle Scholar
  5. Carriel V, Scionti G, Campos F, Roda O, Castro B, Cornelissen M, Garzon I, Alaminos M (2015) In vitro characterization of a nanostructured fibrin agarose bio-artificial nerve substitute. J Tissue Eng Regen Med. doi: 10.1002/term.2039 PubMedGoogle Scholar
  6. Cheema U, Brown RA (2013) Rapid fabrication of living tissue models by collagen plastic compression: understanding three-dimensional cell matrix repair. Adv Wound Care (New Rochelle) 2(4):176–184CrossRefGoogle Scholar
  7. Cho-Lee GY, Garcia-Diez EM, Nunes RA, Marti-Pages C, Sieira-Gil R, Rivera-Baro A (2013) Review of secondary alveolar cleft repair. Ann Maxillofac Surg 3(1):46–50CrossRefPubMedPubMedCentralGoogle Scholar
  8. Colbert SD, Green B, Brennan PA, Mercer N (2015) Contemporary management of cleft lip and palate in the United Kingdom. Have we reached the turning point? Br J Oral Maxillofac Surg 53(7):594–598CrossRefPubMedGoogle Scholar
  9. Eppley BL, Sadove AM (2000) Management of alveolar cleft bone grafting-state of the art. Cleft Palate Craniofac J 37(3):229–233CrossRefPubMedGoogle Scholar
  10. Fernandez-Valades-Gamez R, Garzon I, Liceras-Liceras E, Espana-Lopez A, Carriel V, Martin-Piedra MA, Munoz-Miguelsanz MA, Sanchez-Quevedo MC, Alaminos M, Fernandez-Valades R (2016) Usefulness of a bioengineered oral mucosa model for preventing palate bone alterations in rabbits with a mucoperiostial defect. Biomed Mater 11(1):015015CrossRefPubMedGoogle Scholar
  11. Fujioka M, Fujii T (1997) Maxillary growth following atelocollagen implantation on mucoperiosteal denudation of the palatal process in young rabbits: implications for clinical cleft palate repair. Cleft Palate Craniofac J 34(4):297–308CrossRefPubMedGoogle Scholar
  12. Garzon I, Sanchez-Quevedo MC, Moreu G, Gonzalez-Jaranay M, Gonzalez-Andrades M, Montalvo A, Campos A, Alaminos M (2009a) In vitro and in vivo cytokeratin patterns of expression in bioengineered human periodontal mucosa. J Periodontal Res 44(5):588–597CrossRefPubMedGoogle Scholar
  13. Garzon I, Serrato D, Roda O, Del Carmen Sanchez-Quevedo M, Gonzales-Jaranay M, Moreu G, Nieto-Aguilar R, Alaminos M, Campos A (2009b) In vitro cytokeratin expression profiling of human oral mucosa substitutes developed by tissue engineering. Int J Artif Organs 32(10):711–719PubMedGoogle Scholar
  14. Garzon I, Miyake J, Gonzalez-Andrades M, Carmona R, Carda C, Sanchez-Quevedo Mdel C, Campos A, Alaminos M (2013) Wharton’s jelly stem cells: a novel cell source for oral mucosa and skin epithelia regeneration. Stem Cells Transl Med 2(8):625–632CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gonzalez-Andrades M, Carriel V, Rivera-Izquierdo M, Garzon I, Gonzalez-Andrades E, Medialdea S, Alaminos M, Campos A (2015) Effects of detergent-based protocols on decellularization of corneas with sclerocorneal limbus. Evaluation of regional differences. Transl Vis Sci Technol 4(2):13CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hanny KH, de Vries IA, Haverkamp SJ, Oomen KP, Penris WM, Eijkemans MJ, Kon M, Mink van der Molen AB, Breugem CC (2016) Late detection of cleft palate. Eur J Pediatr 175(1):71–80CrossRefPubMedGoogle Scholar
  17. Ionescu AM, Alaminos M, de la Cruz Cardona J, de Dios Garcia-Lopez Duran J, Gonzalez-Andrades M, Ghinea R, Campos A, Hita E, del Mar Perez M (2011) Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: rheological properties. J Mech Behav Biomed Mater 4(8):1963–1973CrossRefPubMedGoogle Scholar
  18. Liceras-Liceras E, Garzon I, Espana-Lopez A, Oliveira AC, Garcia-Gomez M, Martin-Piedra MA, Roda O, Alba-Tercedor J, Alaminos M, Fernandez-Valades R (2015) Generation of a bioengineered autologous bone substitute for palate repair: an in vivo study in laboratory animals. J Tissue Eng Regen Med. doi: 10.1002/term.2088 PubMedGoogle Scholar
  19. Luitaud C, Laflamme C, Semlali A, Saidi S, Grenier G, Zakrzewski A, Rouabhia M (2007) Development of an engineering autologous palatal mucosa-like tissue for potential clinical applications. J Biomed Mater Res B Appl Biomater 83(2):554–561CrossRefPubMedGoogle Scholar
  20. Martin-Cano F, Garzon I, Maranes C, Liceras E, Martin-Piedra MA, Ruiz-Montes AM, Alaminos M, Fernandez-Valades R (2013) Histological and immunohistochemical changes in the rat oral mucosa used as an autologous urethral graft. J Pediatr Surg 48(7):1557–1564CrossRefPubMedGoogle Scholar
  21. Moreau JL, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP (2007) Tissue engineering solutions for cleft palates. J Oral Maxillofac Surg 65(12):2503–2511CrossRefPubMedGoogle Scholar
  22. Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol 88(2):239–250CrossRefPubMedGoogle Scholar
  23. Nieto-Aguilar R, Serrato D, Garzon I, Campos A, Alaminos M (2011) Pluripotential differentiation capability of human adipose-derived stem cells in a novel fibrin-agarose scaffold. J Biomater Appl 25(7):743–768CrossRefPubMedGoogle Scholar
  24. Oliveira AC, Garzon I, Ionescu AM, Carriel V, Cardona Jde L, Gonzalez-Andrades M, Perez Mdel M, Alaminos M, Campos A (2013) Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS ONE 8(6):e66538CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ophof R, Maltha JC, Kuijpers-Jagtman AM, Von Den Hoff JW (2007) Evaluation of a collagen-glycosaminoglycan dermal substitute in the dog palate. Tissue Eng 13(11):2689–2698CrossRefPubMedGoogle Scholar
  26. Ophof R, Maltha JC, Kuijpers-Jagtman AM, Von den Hoff JW (2008) Implantation of tissue-engineered mucosal substitutes in the dog palate. Eur J Orthod 30(1):1–9CrossRefPubMedGoogle Scholar
  27. Panetta NJ, Gupta DM, Slater BJ, Kwan MD, Liu KJ, Longaker MT (2008) Tissue engineering in cleft palate and other congenital malformations. Pediatr Res 63(5):545–551CrossRefPubMedGoogle Scholar
  28. Pourebrahim N, Hashemibeni B, Shahnaseri S, Torabinia N, Mousavi B, Adibi S, Heidari F, Alavi MJ (2013) A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs. Int J Oral Maxillofac Surg 42(5):562–568CrossRefPubMedGoogle Scholar
  29. San Martin S, Alaminos M, Zorn TM, Sanchez-Quevedo MC, Garzon I, Rodriguez IA, Campos A (2013) The effects of fibrin and fibrin-agarose on the extracellular matrix profile of bioengineered oral mucosa. J Tissue Eng Regen Med 7(1):10–19CrossRefPubMedGoogle Scholar
  30. Scionti G, Moral M, Toledano M, Osorio R, Duran JD, Alaminos M, Campos A, Lopez-Lopez MT (2014) Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model. J Biomed Mater Res A 102(8):2573–2582CrossRefPubMedGoogle Scholar
  31. Shin YJ, Ko SO (2015) Successful and rapid response of speech bulb reduction program combined with speech therapy in velopharyngeal dysfunction: a case report. Maxillofac Plast Reconstr Surg 37(1):22CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tavakolinejad S, Ebrahimzadeh Bidskan A, Ashraf H, Hamidi Alamdari D (2014) A glance at methods for cleft palate repair. Iran Red Crescent Med J 16(9):e15393CrossRefPubMedPubMedCentralGoogle Scholar
  33. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27CrossRefPubMedGoogle Scholar
  34. Vinuela-Prieto JM, Sanchez-Quevedo MC, Alfonso-Rodriguez CA, Oliveira AC, Scionti G, Martin-Piedra MA, Moreu G, Campos A, Alaminos M, Garzon I (2015) Sequential keratinocytic differentiation and maturation in a three-dimensional model of human artificial oral mucosa. J Periodontal Res 50(5):658–665CrossRefPubMedGoogle Scholar
  35. Wagenseil JE, Mecham RP (2007) New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 81(4):229–240CrossRefPubMedGoogle Scholar
  36. Yuanzheng C, Yan G, Ting L, Yanjie F, Peng W, Nan B (2015) Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture. Plast Reconstr Surg 135(5):1405–1412CrossRefPubMedGoogle Scholar
  37. Zoch ML, Clemens TL, Riddle RC (2016) New insights into the biology of osteocalcin. Bone 82:42–49CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. A. Martín-Piedra
    • 1
  • M. Alaminos
    • 1
  • R. Fernández-Valadés-Gámez
    • 2
    • 3
  • A. España-López
    • 4
  • E. Liceras-Liceras
    • 5
  • I. Sánchez-Montesinos
    • 6
  • A. Martínez-Plaza
    • 4
  • M. C. Sánchez-Quevedo
    • 1
  • R. Fernández-Valadés
    • 1
    • 4
    • 5
  • I. Garzón
    • 1
  1. 1.Department of Histology (Tissue Engineering Group)University of Granada and research institute ibs.GRANADAGranadaSpain
  2. 2.Division of Oral and Maxillofacial SurgeryGregorio Marañón University General HospitalMadridSpain
  3. 3.PhD Program in Clinical Medicine and Public HealthUniversity of GranadaGranadaSpain
  4. 4.Craniofacial Malformations and Cleft Lip and Palate Management UnitUniversity of Granada Hospital ComplexGranadaSpain
  5. 5.Division of Pediatric SurgeryUniversity of Granada Hospital ComplexGranadaSpain
  6. 6.Department of Human Anatomy and EmbryologyUniversity of GranadaGranadaSpain

Personalised recommendations