Skip to main content

Advertisement

Log in

Artifacts in single-molecule localization microscopy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Single-molecule localization microscopy provides subdiffraction resolution images with virtually molecular resolution. Through the availability of commercial instruments and open-source reconstruction software, achieving super resolution is now public domain. However, despite its conceptual simplicity, localization microscopy remains prone to user errors. Using direct stochastic optical reconstruction microscopy, we investigate the impact of irradiation intensity, label density and photoswitching behavior on the distribution of membrane proteins in reconstructed super-resolution images. We demonstrate that high emitter densities in combination with inappropriate photoswitching rates give rise to the appearance of artificial membrane clusters. Especially, two-dimensional imaging of intrinsically three-dimensional membrane structures like microvilli, filopodia, overlapping membranes and vesicles with high local emitter densities is prone to generate artifacts. To judge the quality and reliability of super-resolution images, the single-molecule movies recorded to reconstruct the images have to be carefully investigated especially when investigating membrane organization and cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bar-On D, Wolter S, van de Linde S, Heilemann M, Nudelman G, Nachliel E, Gutman M, Sauer M, Ashery U (2012) Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J Biol Chem 287:27158–27167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:6172–6176

    Article  Google Scholar 

  • Boyce M, Bertozzi CR (2011) Bringing chemistry to life. Nat Methods 8:638–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Gao J, Wu J, Zhang M, Cai M, Xu H, Jiang J, Tian Z, Wang H (2015) Revealing the carbohydrate pattern on a cell surface by super-resolution imaging. Nanoscale 7:3373–3380

    Article  CAS  PubMed  Google Scholar 

  • Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehmann N, van de Linde S, Alon A, Ljaschenko D, Keung XZ, Holm T, Rings A, DiAntonio A, Hallermann S, Ashery U, Heckmann M, Sauer M, Kittel RJ (2014) Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat Commun 5:4650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fricke F, Malkusch S, Wangorsch G, Greiner JF, Kaltschmidt B, Kaltschmidt C, Widera D, Dandekar T, Heilemann M (2014) Quantitative single-molecule localization microscopy combined with rule-based modeling reveals ligand-induced TNF-R1 reorganization toward higher-order oligomers. Histochem Cell Biol 142:91–101

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang Y, Cai M, Pan Y, Xu H, Jiang J, Ji H, Wang H (2015) Mechanistic insights into EGFR membrane clustering revealing by super-resolution imaging. Nanoscale 7:2511–2519

    Article  CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Lowe JB (2004) Role of glycosylation in development. Annu Rev Biochem 73:491–537

    Article  CAS  PubMed  Google Scholar 

  • Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176

    Article  CAS  Google Scholar 

  • Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7:339–340

    Article  CAS  PubMed  Google Scholar 

  • Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8:279–280

    Article  CAS  PubMed  Google Scholar 

  • Holm T, Klein T, Löschberger A, Klamp T, Wiebusch G, van de Linde S, Sauer M (2014) A blueprint for cost-efficient localization microscopy. ChemPhysChem 15:651–654

    Article  CAS  PubMed  Google Scholar 

  • Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell SW, Eggeling C (2014) Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun 5:5412

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Proppert S, Sauer M (2014) Eight years of single-molecule localization microscopy. Histochem Cell Biol 141:561–575

    Article  CAS  PubMed  Google Scholar 

  • Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD, McColl J, Klenerman D, Carr AM, Sauer M, Allshire RC, Heilemann M, Laue ED (2012) Quantitative single-molecule microscopy reveals that CENP-ACnp1 deposition occurs during G2 in fission yeast. Open Biol 2:120078

    Article  PubMed Central  PubMed  Google Scholar 

  • Letschert S, Göhler A, Franke C, Bertleff-Zieschang N, Memmel E, Doose S, Seibel J, Sauer M (2014) Super-resolution imaging of plasma membrane glycans. Angew Chem 53:10921–10924

    Article  CAS  Google Scholar 

  • Löschberger A, van de Linde S, Dabauvalle M, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125:570–575

    Article  PubMed  Google Scholar 

  • Löschberger A, Franke C, Krohne G, van de Linde S, Sauer M (2014) Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 127:4351–4355

    Article  PubMed  Google Scholar 

  • Maglione M, Sigrist SJ (2013) Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat Neurosci 16:790–797

    Article  CAS  PubMed  Google Scholar 

  • Malkusch S, Muranyi W, Müller B, Kräusslich H, Heilemann M (2013) Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 139:173–179

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Article  CAS  PubMed  Google Scholar 

  • Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puchner EM, Walter JM, Kasper R, Huang B, Lim WA (2013) Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci 110:16015–16020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B 39:172–212

    Google Scholar 

  • Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, Unser M (2015) Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods. doi:10.1038/nmeth.3442

  • Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun 5:4509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer M (2013) Localization microscopy coming of age: from concepts to biological impact. J Cell Sci 126:3505–3513

    Article  CAS  PubMed  Google Scholar 

  • Schücker K, Holm T, Franke C, Sauer M, Benavente R (2015) Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. Proc Natl Acad Sci USA 112:2029–2033

    Article  PubMed Central  PubMed  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21

    Article  Google Scholar 

  • Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JAG, Ellenberg J (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–658

    Article  CAS  PubMed  Google Scholar 

  • van de Linde S, Sauer M (2014) How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem Soc Rev 43:1076–1087

    Article  PubMed  Google Scholar 

  • van de Linde S, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J Biotechnol 149:260–266

    Article  PubMed  Google Scholar 

  • van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    Article  PubMed  Google Scholar 

  • Whelan DR, Bell TDM (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12:655–662

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Endersfelder U, van de Linde S, Heilemann M, Sauer M (2011) Measuring localization performance of super-resolution algorithms on very active samples. Opt Express 19:7020–7033

    Article  PubMed  Google Scholar 

  • Wolter S, Löschberger A, Holm T, Aufmkolk S, Dabauvalle M, van de Linde S, Sauer M (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9:1040–1041

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9:721–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, Grant No. SA 829/13-9). We thank Sebastian Malkusch for providing us the cluster analysis software Lama.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sören Doose or Markus Sauer.

Additional information

Anne Burgert and Sebastian Letschert have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

dSTORM movie_1

Microtubules labeled U2OS cells shown in Fig. 1 excited at 641 nm with ~7 kW cm−2 at a frame rate of 50 Hz (AVI 889 kb)

dSTORM movie_2

Microtubules labeled U2OS cells shown in Fig. 1 excited at 641 nm with ~0.3 kW cm−2 at a frame rate of 50 Hz. (AVI 1574 kb)

dSTORM movie_3

Microtubules labeled U2OS cells shown in Fig. 1 excited at 641 nm with ~0.1 kW cm−2 at a frame rate of 50 Hz. (AVI 1585 kb)

dSTORM movie_4

Alexa Fluor 647-WGA-labeled glycans in the basal plasma membrane of U2OS cells shown in Fig. 1 excited at 641 nm with ~7 kW cm−2 at a frame rate of 50 Hz. (AVI 1879 kb)

dSTORM movie_5

Alexa Fluor 647-WGA-labeled glycans in the basal plasma membrane of U2OS cells shown in Fig. 1 excited at 641 nm with ~0.3 kW cm−2 at a frame rate of 50 Hz. (AVI 2394 kb)

dSTORM movie_6

Alexa Fluor 647-WGA-labeled glycans in the basal plasma membrane of U2OS cells shown in Fig. 1 excited at 641 nm with ~0.1 kW cm−2 at a frame rate of 50 Hz. (AVI 2456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgert, A., Letschert, S., Doose, S. et al. Artifacts in single-molecule localization microscopy. Histochem Cell Biol 144, 123–131 (2015). https://doi.org/10.1007/s00418-015-1340-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1340-4

Keywords

Navigation