Skip to main content
Log in

Enzyme-assisted photosensitization activates different apoptotic pathways in Rose Bengal acetate treated HeLa cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Photosensitization of tumor cells after incubation with Rose Bengal acetate (RB-Ac) induces multiple organelle photodamage followed by apoptotic cell death. We used immunocytochemical techniques in multicolor fluorescence microscopy to elucidate whether this occurs through the simultaneous activation of different apoptotic pathways, in HeLa cells. We detected in situ the activated forms of caspases 9 and 3, and the translocation from the mitochondria to the nucleus of the apoptosis inducing factor; DNA electrophoretic techniques were also used to assess the occurrence of nuclear DNA cleavage into either high- or low-molecular-weight fragments. Both the caspase-dependent and caspase-independent apoptotic pathways are activated. The genomic DNA is degraded into high molecular weight molecules only, without the formation of oligonucleosome-sized fragments. The ability of RB-Ac to induce the simultaneous release of apoptogenic signals from different photodamaged organelles makes it an especially powerful cytotoxic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostinis P, Vantieghem A, Merlevede W, Witte PAM (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34:221–241

    Article  PubMed  CAS  Google Scholar 

  • Agostinis P, Buytaert E, Breyssens H, Hendrickx N (2004) Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci 3:721–729

    Article  PubMed  CAS  Google Scholar 

  • Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704:59–86

    PubMed  CAS  Google Scholar 

  • Berg K, Moan J (1997) Lysosomes and microtubules as targets for photochemotherapy of cancer. Photochem Photobiol 65:403–409

    Article  PubMed  CAS  Google Scholar 

  • Bottiroli G, Croce AC, Balzarini P, Locatelli D, Baglioni P, Lo Nostro P, Monici M, Pratesi R (1997) Enzyme-assisted cell photodsensitization: a proposal for an efficient approach to tumor therapy and diagnosis. The Rose Bengal fluorogenic substrate. Photochem Photobiol 66:74–383

    Article  Google Scholar 

  • Bottiroli G, Croce AC, Baglioni P, Monici M (2000) Fluorogenic substrates for diagnosis and photodynamic treatment of tumors. US Patent 6,036,941, 14 March 2000

  • Bottiroli G, Croce AC, Biggiogera M, Lanza KS, Fiorani S, Locatelli D (2001) Photosensitizer damage targets in Rose Bengal acetate treated cells. Laser Surg Med Suppl 13:41

    Google Scholar 

  • Bottone MG, Soldani C, Fraschini A, Alpini C, Croce AC, Bottiroli G, Pellicciari C (2007) Enzyme-assisted photosensitization with rose Bengal acetate induces structural and functional alteration of mitochondria in HeLa cells. Histochem Cell Biol 127:263–271

    Article  PubMed  CAS  Google Scholar 

  • Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    PubMed  CAS  Google Scholar 

  • Croce AC, Wyroba E, Bottiroli G (1992) Distribution and retention of rose bengal and disulphonated aluminium phthalocyanine: a comparative study in unicellular eukaryote. J Photochem Photobiol 16:319–330

    CAS  Google Scholar 

  • Croce AC, Supino R, Lanza KS, Locatelli D, Baglioni P, Bottiroli G (2002) Photosensitizer accumulation in spontaneous multidrug resistant cells: a comparative study with Rhodamine 123, Rose Bengal acetate and Photofrin. Photochem Photobiol Sci 1:71–78

    Article  PubMed  CAS  Google Scholar 

  • Dhale J, Steen HB, Moan J (1999) The mode of cell death induced by photodynamic treatment depends on cell density. Photochem Photobiol 70:363–368

    Article  Google Scholar 

  • Dhale J, Bagdonas S, Kaathus O, Olsen G, Steen HB, Moan J (2000) The bystander effect in photodynamic inactivation of cells. Biochim Biophys Acta 1475:273–280

    Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  PubMed  CAS  Google Scholar 

  • Donzelli M, Bernardi R, Negri C, Prosperi E, Padovan L, Lavialle C, Brison O, Scovassi AI (1999) Apoptosis-prone phenotype of human colon carcinoma cells with a high level amplification of the c-myc gene. Oncogene 18:439–448

    Article  PubMed  CAS  Google Scholar 

  • Dougherty TJ (2002) An update on photodynamic therapy applications. J Clin Laser Med Surg 20:3–7

    Article  PubMed  Google Scholar 

  • Furre IE, Moller MT, Shahzidi S, Nesland JM, Peng Q (2006) Involvement of both caspase-dependent and-independent pathways in apoptotic induction by hexaminolevulinate-mediated photodynamic therapy in human lymphoma cells. Apoptosis 11:2031–2042

    Article  PubMed  CAS  Google Scholar 

  • Granville DJ, Mcmanus BM, Hunt DW (2001) Photodynamic therapy: shedding light on the biochemical pathways regulating porphyrin-mediated cell death. Histol Histopathol 16:309–317

    PubMed  CAS  Google Scholar 

  • Hilf R (2007) Mitochondria are target of photodynamic therapy. J Bioenerg Biomembr 39:5–89

    Article  Google Scholar 

  • Kessel D, Luo Y (1999) Photodynamic therapy: a mitochondrial inducer of apoptosis. Cell Death Differ 6:28–35

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Luo Y, Deng Y (1997) The role of subcellular localization in initiation of apoptosis by photodynamic therapy. Photochem Photobiol 65:422–426

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Luo Y, Mathieu P, Reiners JJ (2000) Determinants of the apoptotic response to lysosomal photodamage. Photochem Photobiol 71:196–200

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Conley M, Vicente MG, Reiners JJ (2005) Studies on the subcellular localization of the porphycene CPO. Photochem Photobiol 81:569–572

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Vicente MGH, Reiners JJ Jr (2006) Initiation of apoptosis and autophagy by photodynamic therapy. Lasers Surg Med 38:482–488

    Article  PubMed  Google Scholar 

  • Luo Y, Kessel D (1997) Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol 66:479–483

    Article  PubMed  CAS  Google Scholar 

  • Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  PubMed  CAS  Google Scholar 

  • Morgan J, Oseroff AR (2001) Mitochondria-based photodynamic anti-cancer therapy. Adv Drug Deliv Rev 49:71–86

    Article  PubMed  CAS  Google Scholar 

  • Neckers DC, Valdes-Aguilera OM (1993) Photochemistry of the xanthene dyes. Adv Photochem 18:315–394

    Article  CAS  Google Scholar 

  • Niedre M, Patterson MS, Wilson BC (2002) Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem Photobiol 75:382–391

    Article  PubMed  CAS  Google Scholar 

  • Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21

    Article  PubMed  CAS  Google Scholar 

  • Panzarini E, Tenuzzo B, Palazzo F, Chionna A, Dini L (2006) Apoptosis induction and mitochondria alteration in human HeLa tumour cells by photoproducts of Rose Bengal acetate. J Photochem Photobiol B Biol 83:39–47

    Article  CAS  Google Scholar 

  • Piette J, Volanti C, Vantieghem A, Matroule JY, Habraken Y, Agostinis P (2003) Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers. Biochem Pharmacol 15:1651–1659

    Article  Google Scholar 

  • Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7:321–328

    Article  PubMed  CAS  Google Scholar 

  • Soldani C, Bottone MG, Pellicciari C, Scovassi AI (2001a) Two-color fluorescence detection of Poly (ADP-Ribose) Polymerase-1 (PARP-1) cleavage and DNA strand breaks in etoposide-induced apoptotic cells. Eur J Histochem 45:389–392

    PubMed  CAS  Google Scholar 

  • Soldani C, Lazzè M, Bottone MG, Tognon G, Biggiogera M, Pellicciari C, Scovassi AI (2001b) Poly(ADP-ribose) polymerase cleavage during apoptosis: when and where? Exp Cell Res 269:193–201

    Article  PubMed  CAS  Google Scholar 

  • Soldani C, Bottone MG, Croce AC, Fraschini A, Bottiroli G, Pellicciari C (2004) The Golgi apparatus is a primary site of intracellular damage after photosensitization with rose Bengal acetate. Eur J Histochem 48:443–448

    PubMed  CAS  Google Scholar 

  • Soldani C, Bottone MG, Croce AC, Fraschini A, Biggiogera M, Bottiroli G, Pellicciari C (2007) Apoptosis in tumor cells photosensitized with rose Bengal acetate is induced by multiple organelle photodamage. Histochem Cell Biol 128:485–495

    Article  PubMed  CAS  Google Scholar 

  • Teiten MH, Bezdetnaya L, Morliere P, Santus R, Guillemin F (2003) Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells. Br J Cancer 88:146–152

    Article  PubMed  Google Scholar 

  • Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  • Vrouenraets MB, Visser GW, Snow GB, van Dongen GA (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23:505–522

    PubMed  CAS  Google Scholar 

  • Wyld L, Reed MW, Brown NJ (2001) Differential cell death response to photodynamic therapy is dependent on dose and cell type. Br J Cancer 84:1384–1386

    Article  PubMed  CAS  Google Scholar 

  • Yuste VJ, Sanchez-Lopez I, Solé C, Moubarak RS, Bayaskas JR, Dolcet X, Encinas M, Susin SA, Comella JX (2005) The contribution of Apoptosis-inducing factor, caspases-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA degradation during apoptosis. J Biol Chem 280:35670–35683

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the following Italian institutions for supporting our research: MIUR (PRIN project no. 2005058254), University of Pavia (FAR grant 2007) and Regione Lombardia (Project Metadistretti n. 4238). Confocal images were taken at the Centro Grandi Strumenti of the University of Pavia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Bottone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottone, M.G., Soldani, C., Fraschini, A. et al. Enzyme-assisted photosensitization activates different apoptotic pathways in Rose Bengal acetate treated HeLa cells. Histochem Cell Biol 131, 391–399 (2009). https://doi.org/10.1007/s00418-008-0538-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0538-0

Keywords

Navigation