The retinal venous pressure at different levels of airway pressure

Abstract

Purpose

To investigate retinal venous pressure (RVP) as a function of airway pressure (AirP) during the Valsalva maneuver (VM) in human subjects.

Methods

Forty-three healthy volunteers (age, 22.0 (2.3) years) (median and interquartile range) were investigated using the following instruments: dynamic contour tonometer, contact lens dynamometer (CLD), and aneroid manometer. The following measurements were performed in their left eyes: tonometry and dynamometry during VM at different levels of airway pressure (AirP = 0, 10, 20, 30, and 40 mmHg).

Results

The median RVP during spontaneous breathing (AirP = 0) was 19.7 (6.4) (median in mmHg (interquartile range)) and the intraocular pressure (IOP) in mydriasis was 16.3 (3.1) mmHg. Spontaneous pulsation occurred in 58.1% of the subjects. RVP increased nonlinearly. The coefficient of variation of four individual measurements of RVP at each pressure level averaged 8.1 (7.6) %. At different AirP levels of 10, 20, 30, and 40 mmHg, the following RVPs were measured: 29.6 (12.6); 34.2 (12.8); 38.0 (10.5); and 40.3 (11.0), respectively. The rise of RVP (Δ RVP) during VM was significantly higher than that of Δ IOP (p < 0.0001, Wilcoxon test). Δ RVP between 0 and 40 mmHg AirP was 20.6 mmHg and Δ IOP 1.5 mmHg. The steepest slope of the RVP/AirP curve was observed at the first step from 0 to 10 mmHg of AirP (∆ RVP = 9.9 mmHg).

Conclusion

A nonlinear relationship between RVP and AirP was found during VM. Small rises in AirP increase the RVP and affect retinal circulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Aykan U, Erdurmus M, Yilmaz B, Bilge AH (2010) Intraocular pressure and ocular pulse amplitude variations during the Valsalva maneuver. Graefes Arch Clin Exp Ophthalmol 248:1183–1186

    Article  Google Scholar 

  2. 2.

    Brody S, Erb C, Veit R, Rau H (1999) Intraocular pressure changes: the influence of psychological stress and the Valsalva maneuver. Biol Psychol 51:43–57

    CAS  Article  Google Scholar 

  3. 3.

    Oggel K, Sommer G, Neuhann T, Hinz J (1982) Veränderungen des Augeninnendruckes be intrathorakaler Druckerhöhung in Abhängigkeit von der Körperposition und der Achsenlänge des Auges. Graefes Arch Clin Exp Ophthalmol 218:51–54

    CAS  Article  Google Scholar 

  4. 4.

    Pott F, van Lieshout JJ, Ide K, Madsen P, Secher NH (2000) Middle cerebral artery blood velocity during a Valsalva maneuver in the standing position. J Appl Physiol 88(5):1545–1550

    CAS  Article  Google Scholar 

  5. 5.

    Kappmeyer K, Lanzl IM (2010) Augeninnendruck während und nach dem Spielen von Hoch- und Niedrigwiderstandblasinstrumenten. Ophthalmologe 107(1):41–46

    CAS  Article  Google Scholar 

  6. 6.

    Schmidtmann G, Jahnke S, Seidel EJ, Sickenberger W, Grein HJ (2011) Intraocular pressure fluctuations in professional brass and woodwind musicians during common playing conditions. Graefes Arch Clin Exp Ophthalmol 249(6):895–901

    Article  Google Scholar 

  7. 7.

    Stodtmeister R, Heyde M, Georgii S, Matthè E, Spoerl E, Pillunat LE (2018) Retinal venous pressure is higher than the airway pressure and the intraocular pressure during the Valsalva manoeuvre. Acta Ophthalmol 96:e68–e73

    Article  Google Scholar 

  8. 8.

    Hayreh SS (1978) Structure and blood supply of the optic nerve. In: Heilmann K, Richardson KT (eds) Glaucoma: conceptions of a disease: pathogenesis, diagnosis, therapy. Thieme, Stuttgart, pp 78–96

    Google Scholar 

  9. 9.

    Kanngiesser HE, Kniestedt C, Robert YCA (2005) Dynamic contour tonometry: presentation of a new tonometer. J Glaucoma 14:344–350

    Article  Google Scholar 

  10. 10.

    Gelman S (2008) Venous function and central venous pressure: a physiologic story. Anesthesiology 108:735–748

    Article  Google Scholar 

  11. 11.

    Hainsworth R (1990) The importance of vascular capacitance in cardiovascular control. News Physiol Sci 5:250–254

    Google Scholar 

  12. 12.

    Berger D, Takala J (2018) Determinants of systemic venous return and the impact of positive pressure ventilation. Ann Transl Med 6:350

    Article  Google Scholar 

  13. 13.

    Krogh A (1912) The regulation of the supply of blood to the right heart. Skand Arch Physiol 27:227–248

    Article  Google Scholar 

  14. 14.

    Magder S (2016) Volume and its relationship to cardiac output and venous return. Crit Care 20:271

    CAS  Article  Google Scholar 

  15. 15.

    Lovasik JV, Kergoat H, Riva CE et al (2002) Correlation between the intra-thoracic pressure and choroidal blood flow. Invest Ophthalmol Vis Sci 49:E-Abstract 3315

    Google Scholar 

  16. 16.

    Lovasik JV, Kergoat H (2012) Systemic determinants. In: Schmetterer L, Kiel JW (eds) Ocular blood flow, 1st edn. Springer, Heidelberg, pp 173–210

    Google Scholar 

  17. 17.

    Morgan WH, Hazelton ML, Azar SL, House PH, Yu DY, Cringle SJ, Balaratnasingam C (2004) Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology 111:1489–1494

    Article  Google Scholar 

  18. 18.

    Legler U, Jonas JB (2009) Frequency of spontaneous pulsations of the central retinal vein in glaucoma. J Glaucoma 18:210–212

    Article  Google Scholar 

  19. 19.

    Lorentzen SE (1970) Incidence of spontaneous venous pulsation in the retina. Acta Ophthalmol 48:765–770

    CAS  Google Scholar 

  20. 20.

    Morgan WH, Balaratnasingam C, Hazelton ML, House PH, Cringle SJ, Yu DY (2005) The force required to induce hemivein pulsation is associated with the site of maximum field loss in glaucoma. Invest Ophthalmol Vis Sci 46:1307–1312

    Article  Google Scholar 

  21. 21.

    Nomura H, Shimokata H, Ando F, Miyake Y, Kuzuya F (1999) Age-related changes in intraocular pressure in a large japanese population: a cross-sectional and longitudinal study. Ophtalmology 106:2016–2022

    CAS  Article  Google Scholar 

  22. 22.

    Köpke B (2016) Zusammenhang zwischen dem am Oberarm und am Auge gemessenen Blutdruck und Messung des Venenpulsationsdruckes mittels Kontaktglas-Dynamometer. (Correlation between the blood pressure measured at the upper arm and the eye and measurement of the retinal venous pressure using a contact lens dynamometer) Dissertation. Kiel University, Faculty of Medicine

  23. 23.

    Stodtmeister R, Oppitz T, Spoerl E, Haustein M, Boehm AG (2010) Contact lens dynamometry: the influence of age. Invest Ophthalmol Vis Sci 51:6620–6624

    Article  Google Scholar 

  24. 24.

    Schmetterer L, Dallinger S, Findl O, Strenn K, Graselli U, Eichler HG, Wolzt M (1998) Noninvasive investigations of the normal ocular circulation in humans. Invest Ophthalmol Vis Sci 39:1210–1220

    CAS  PubMed  Google Scholar 

  25. 25.

    Reiner A, Fitzgerald MEC, Li C (2012) Neural control of ocular blood flow. In: Schmetterer L, Kiel JW (eds) Ocular blood flow, 1st edn. Springer, Heidelberg, p 244

    Google Scholar 

  26. 26.

    Schuman JS, Massicotte EC, Connolly S, Hertzmark E, Mukherji B, Kunen MZ (2000) Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology 107:127–133

    CAS  Article  Google Scholar 

  27. 27.

    Alm A (1992) Ocular circulation. In: Hart WM Jr (ed) Adler’s physiology of the eye, 9th edn. Mosby Year Book, St. Louis, pp 198–227

    Google Scholar 

  28. 28.

    Bron AJ, Tripathi RC, Tripathi BJ (1997) The choroid and uveal vessels. In: Wolff’s anatomy of the eye and orbit. Chapman & Hall, London, p 405

    Google Scholar 

  29. 29.

    Bill A (1984) Circulation in the eye. In: Renkin EM, Michel CC (eds) Handbook of physiology: the cardiovascular system. Waverly Press, Baltimore, pp 1001–1034

    Google Scholar 

  30. 30.

    Kirsch KA, von Ameln H (1982) Physiologie des Niederdrucksystems. In: Busse R (ed) Kreislaufphysiologie. Georg Thieme Verlag, Stuttgart, pp 104–135

    Google Scholar 

  31. 31.

    Stodtmeister R, Ventzke S, Spoerl E, Boehm AG, Terai N, Haustein M, Pillunat LE (2013) Enhanced pressure in the central retinal vein decreases the perfusion pressure in the prelaminar region of the optic nerve head. Invest Ophthalmol Vis Sci 54:4698–4704

    Article  Google Scholar 

  32. 32.

    Schwab B, Schultze-Florey A (2004) Intraorale Druckentwicklung bei Holz- und Blechbläsern. Musikphysiologie und Musikermedizin 11(4):183–194

    Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Klimova for assistance with statistical analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sofie Heimann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The methodology for this study was approved by the ethics committee of Univ. Hospital Carl Gustav Carus, TU Dresden (Ethics approval number: EK 171042017). This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heimann, S., Stodtmeister, R., Pillunat, L.E. et al. The retinal venous pressure at different levels of airway pressure. Graefes Arch Clin Exp Ophthalmol (2020). https://doi.org/10.1007/s00417-020-04796-4

Download citation

Keywords

  • Airway pressure
  • Retinal venous pressure
  • Intraocular pressure
  • Ophthalmodynamometry
  • Tonometry
  • Valsalva maneuver