Advertisement

Current perspectives on corneal collagen crosslinking (CXL)

  • Sandeepani K. Subasinghe
  • Kelechi C. Ogbuehi
  • George J. Dias
Review Article

Abstract

Corneal collagen crosslinking has revolutionized the treatment of keratoconus and post-refractive corneal ectasia in the past decade. Corneal crosslinking with riboflavin and ultraviolet A is proposed to halt the progression of keratectasia. In the original “Conventional Dresden Protocol” (C-CXL), the epithelium is removed prior to the crosslinking process to facilitate better absorption of riboflavin into the corneal stroma. Studies analyzing its short- and long-term outcomes revealed that although there are inconsistencies as to the effectiveness of this technique, the advantages prevail over the disadvantages. Therefore, corneal crosslinking (CXL) is widely used in current practice to treat keratoconus. In an attempt to improve the visual and topographical outcomes of C-CXL and to minimize time-related discomfort and endothelial-related side effects, various modifications such as accelerated crosslinking and transepithelial crosslinking methods have been introduced. The comparison of outcomes of these modified techniques with C-CXL has also returned contradictory results. Hence, it is difficult to clearly identify an optimal procedure that can overcome issues associated with the CXL. This review provides an up-to-date analysis on clinical and laboratory findings of these popular crosslinking protocols used in the treatment of keratoconus. It is evident from this review that in general, these modified techniques have succeeded in minimizing the immediate complications of the C-CXL technique. However, there were contradictory viewpoints regarding their effectiveness when compared with the conventional technique. Therefore, these modified techniques need to be further investigated to arrive at an optimal treatment option for keratoconus.

Keywords

Crosslinking Conventional crosslinking protocol Cornea Dresden protocol Keratoconus 

Notes

Acknowledgements

The authors would like to acknowledge Mr. Robbie McPhee (illustrator/graphic artist at the Department of Anatomy, University of Otago) for assisting with the images.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS (2010) Keratoconus: a review. Cont Lens Anterior Eye 33(4):157–166.  https://doi.org/10.1016/j.clae.2010.04.006 PubMedGoogle Scholar
  2. 2.
    Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RPL (2017) Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol 175:169–172.  https://doi.org/10.1016/j.ajo.2016.12.015 PubMedGoogle Scholar
  3. 3.
    Ozkurt Y, Atakan M, Gencaga T, Akkaya S (2012) Contact lens visual rehabilitation in keratoconus and corneal keratoplasty. J Ophthalmol 2012:832070.  https://doi.org/10.1155/2012/832070 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Boimer C, Lee K, Sharpen L, Mashour RS, Slomovic AR (2011) Evolving surgical techniques of and indications for corneal transplantation in Ontario from 2000 to 2009. Can J Ophthalmol 46(4):360–366PubMedGoogle Scholar
  5. 5.
    Busin M, Scorcia V, Zambianchi L, Ponzin D (2012) Outcomes from a modified microkeratome-assisted lamellar keratoplasty for keratoconus. Arch Ophthalmol 130(6):776–782.  https://doi.org/10.1001/archophthalmol.2011.1546 PubMedGoogle Scholar
  6. 6.
    Sorkin N, Varssano D (2014) Corneal collagen crosslinking: a systematic review. Ophthalmologica 232(1):10–27PubMedGoogle Scholar
  7. 7.
    Hassan Z, Nemeth G, Modis L, Szalai E, Berta A (2014) Collagen cross-linking in the treatment of pellucid marginal degeneration. Indian J Ophthalmol 62(3):367–370.  https://doi.org/10.4103/0301-4738.109523 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Greenstein SA, Fry KL, Hersh PS (2012) Effect of topographic cone location on outcomes of corneal collagen cross-linking for keratoconus and corneal ectasia. J Refract Surg 28(6):397–405.  https://doi.org/10.3928/1081597X-20120518-02 PubMedGoogle Scholar
  9. 9.
    Rabinowitz SY (2006) Ectasia after laser in situ keratomileusis. Curr Opin Ophthalmol 17(5):421–426.  https://doi.org/10.1097/01.icu.0000243015.51886.3a PubMedGoogle Scholar
  10. 10.
    Kanellopoulos AJ, Binder PS (2007) Collagen cross-linking (CCL) with sequential topography-guided PRK: a temporizing alternative for keratoconus to penetrating keratoplasty. Cornea 26(7):891.  https://doi.org/10.1097/ICO.0b013e318074e424 PubMedGoogle Scholar
  11. 11.
    Kanellopoulos AJ, Binder PS (2011) Management of corneal ectasia after LASIK with combined, same-day, topography-guided partial transepithelial PRK and collagen cross-linking: the Athens protocol. J Refract Surg 27(5):323.  https://doi.org/10.3928/1081597X-20101105-01 PubMedGoogle Scholar
  12. 12.
    Tsugita A, Okada Y, Uehara K (1965) Photosensitized inactivation of ribonucleic acids in the presence of riboflavin. Biochim Biophys Acta 103(2):360–363PubMedGoogle Scholar
  13. 13.
    Spoerl E, Wollensak G, Seiler T (2004) Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res 29(1):35–40.  https://doi.org/10.1080/02713680490513182 PubMedGoogle Scholar
  14. 14.
    Iseli HP, Thiel MA, Hafezi F, Kampmeier J, Seiler T (2008) Ultraviolet A/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts. Cornea 27(5):590–594.  https://doi.org/10.1097/ICO.0b013e318169d698 PubMedGoogle Scholar
  15. 15.
    Price MO, Tenkman LR, Schrier A, Fairchild KM, Trokel SL, Price FW Jr (2012) Photoactivated riboflavin treatment of infectious keratitis using collagen cross-linking technology. J Refract Surg 28(10):706–713.  https://doi.org/10.3928/1081597x-20120921-06 PubMedGoogle Scholar
  16. 16.
    Balparda K, Maldonado MJ (2017) Corneal collagen cross-linking. A review of its clinical applications. Arch Soc Esp Oftalmol 92(4):166–174.  https://doi.org/10.1016/j.oftal.2016.10.004 PubMedGoogle Scholar
  17. 17.
    Sharma KN, Roy VS, Maharana SP, Sehra BS, Sinha BR, Tandon BR, Titiyal BJ, Vajpayee BR (2014) Outcomes of corneal collagen crosslinking in pseudophakic bullous keratopathy. Cornea 33(3):243–246.  https://doi.org/10.1097/ICO.0000000000000004 PubMedGoogle Scholar
  18. 18.
    Arora R, Manudhane A, Saran RK, Goyal J, Goyal G, Gupta D (2013) Role of corneal collagen cross-linking in Pseudophakic bullous keratopathy: a clinicopathological study. Ophthalmology 120(12):2413–2418.  https://doi.org/10.1016/j.ophtha.2013.07.038 PubMedGoogle Scholar
  19. 19.
    Raiskup F, Spoerl E (2013) Corneal crosslinking with riboflavin and ultraviolet A. Part II. Clinical indications and results. Ocul Surf 11(2):93–108.  https://doi.org/10.1016/j.jtos.2013.01.003 PubMedGoogle Scholar
  20. 20.
    Gehring J (2000) With radiation crosslinking of engineering plastics into the next millennium. Radiat Phys Chem 57(3–6):361–365.  https://doi.org/10.1016/S0969-806x(99)00405-3 Google Scholar
  21. 21.
    Ruyter IE (1988) Composites—characterization of composite filling materials: reactor response. Adv Dent Res 2(1):122–133.  https://doi.org/10.1177/08959374880020010401 PubMedGoogle Scholar
  22. 22.
    Hudis M, Prescott L (1972) Surface crosslinking of polyethylene produced by the ultraviolet radiation from a hydrogen glow discharge. J Polymer Sci C Polymer Lett 10(3):179–183.  https://doi.org/10.1002/pol.1972.110100305 Google Scholar
  23. 23.
    Moszner N, Gianasmidis A, Klapdohr S, Fischer UK, Rheinberger V (2008) Sol–gel materials: 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent Mater 24(6):851–856.  https://doi.org/10.1016/j.dental.2007.10.004 PubMedGoogle Scholar
  24. 24.
    Golomb G, Schoen FJ, Smith MS, Linden J, Dixon M, Levy RJ (1987) The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol 127(1):122–130PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dahl BJ, Spotts E, Truong JQ (2012) Corneal collagen cross-linking: an introduction and literature review. Optometry 83(1):33–42.  https://doi.org/10.1016/j.optm.2011.09.011 PubMedGoogle Scholar
  26. 26.
    Daxer A, Misof K, Grabner B, Ettl A, Fratzl P (1998) Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci 39(3):644–648PubMedGoogle Scholar
  27. 27.
    Bailey AJ (1987) Structure, function and ageing of the collagens of the eye. Eye 1(2):175–183PubMedGoogle Scholar
  28. 28.
    Spoerl E, Huhle M, Seiler T (1998) Induction of cross-links in corneal tissue. Exp Eye Res 66(1):97–103.  https://doi.org/10.1006/exer.1997.0410 PubMedGoogle Scholar
  29. 29.
    Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135(5):620–627PubMedGoogle Scholar
  30. 30.
    Mastropasqua L (2015) Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives. Eye and Vision 2(1):19.  https://doi.org/10.1186/s40662-015-0030-6 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kamaev P, Friedman MD, Sherr E, Muller D (2012) Photochemical kinetics of corneal cross-linking with riboflavin kinetics of corneal cross-linking. Invest Ophthalmol Vis Sci 53(4):2360–2367.  https://doi.org/10.1167/iovs.11-9385 PubMedGoogle Scholar
  32. 32.
    Meek KM, Hayes S (2013) Corneal cross-linking—a review. Ophthalmic Physiol Opt 33(2):78–93.  https://doi.org/10.1111/opo.12032 PubMedGoogle Scholar
  33. 33.
    Jouve L, Borderie V, Sandali O, Temstet C, Basli E, Laroche L, Bouheraoua N (2017) Conventional and iontophoresis corneal cross-linking for keratoconus: efficacy and assessment by optical coherence tomography and confocal microscopy. Cornea 36(2):153–162.  https://doi.org/10.1097/ico.0000000000001062 PubMedGoogle Scholar
  34. 34.
    Labate C, De Santo MP, Lombardo G, Lombardo M (2015) Understanding of the viscoelastic response of the human corneal stroma induced by riboflavin/UV-A cross-linking at the nano level. PLoS One 10(4):e0122868.  https://doi.org/10.1371/journal.pone.0122868 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Abbondanza M, Abbondanza G, Felice VD (2017) Mini asymmetric radial keratotomy and corneal cross-linking for the treatment of a bilateral stage IV keratoconus in a 14-year-old child. Med Arch 71(1):69–71.  https://doi.org/10.5455/medarh.2017.71.69-71 PubMedPubMedCentralGoogle Scholar
  36. 36.
    Gomes PJA, Tan JD, Rapuano WC, Belin LM, Ambrósio SR, Guell SJ, Malecaze SF, Nishida SK, Sangwan SV (2015) Global consensus on keratoconus and ectatic diseases. Cornea 34(4):359–369.  https://doi.org/10.1097/ICO.0000000000000408 PubMedGoogle Scholar
  37. 37.
    Padmanabhan P, Rachapalle Reddi S, Rajagopal R, Natarajan R, Iyer G, Srinivasan B, Narayanan N, Lakshmipathy M, Agarwal S (2016) Corneal collagen cross-linking for keratoconus in pediatric patients-long-term results. Cornea 36(2):138–143.  https://doi.org/10.1097/ICO.0000000000001102 Google Scholar
  38. 38.
    Samaras K, Doutch J, Hayes S, Marshall J, Meek KM, O’Brart DP (2009) Effect of epithelial retention and removal on riboflavin absorption in porcine corneas. J Refract Surg 25(9):771–775PubMedGoogle Scholar
  39. 39.
    Mooren P, Gobin L, Bostan N, Wouters K, Zakaria N, Mathysen DGP, Koppen C (2016) Evaluation of UVA cytotoxicity for human endothelium in an ex vivo corneal cross-linking experimental setting. J Refract Surg 32(1):41–46.  https://doi.org/10.3928/1081597X-20151207-05 PubMedGoogle Scholar
  40. 40.
    Wollensak G, Aurich H, Wirbelauer C, Sel S (2010) Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg 36(1):114–120.  https://doi.org/10.1016/j.jcrs.2009.07.044 PubMedGoogle Scholar
  41. 41.
    Wollensak G, Wilsch M, Spoerl E, Seiler T (2004) Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA. Cornea 23(5):503–507PubMedGoogle Scholar
  42. 42.
    Arbelaez MC, Sekito MB, Vidal C, Choudhury SR (2009) Collagen cross-linking with riboflavin and ultraviolet-A light in keratoconus: one-year results. Oman J Ophthalmol 2(1):33–38.  https://doi.org/10.4103/0974-620X.48420 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Uçakhan ÖÖ, Bayraktutar ÖB (2017) Morphology of the corneal limbus following standard and accelerated corneal collagen cross-linking (9 mW/cm2) for keratoconus. Cornea 36(1):78–84.  https://doi.org/10.1097/ICO.0000000000001029 PubMedGoogle Scholar
  44. 44.
    Leccisotti A, Islam T (2010) Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg 26(12):942–948.  https://doi.org/10.3928/1081597X-20100212-09 PubMedGoogle Scholar
  45. 45.
    Caporossi A, Baiocchi S, Mazzotta C, Traversi C, Caporossi T (2006) Parasurgical therapy for keratoconus by riboflavin–ultraviolet type A rays induced cross-linking of corneal collagen: preliminary refractive results in an Italian study. J Cataract Refract Surg 32(5):837–845.  https://doi.org/10.1016/j.jcrs.2006.01.091 PubMedGoogle Scholar
  46. 46.
    Choi M, Kim J, Kim EK, Seo KY, Kim TI (2017) Comparison of the conventional dresden protocol and accelerated protocol with higher ultraviolet intensity in corneal collagen cross-linking for keratoconus. Cornea 36(5):523–529.  https://doi.org/10.1097/ico.0000000000001165 PubMedGoogle Scholar
  47. 47.
    Kymionis GD, Grentzelos MA, Karavitaki AE, Kounis GA, Kontadakis GA, Yoo S, Pallikaris IG (2010) Transepithelial phototherapeutic keratectomy using a 213-nm solid-state laser system followed by corneal collagen cross-linking with riboflavin and UVA irradiation. J Ophthalmol 2010:146543.  https://doi.org/10.1155/2010/146543 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Tabibian D, Kling S, Hammer A, Richoz O, Hafezi F (2017) Repeated cross-linking after a short time does not provide any additional biomechanical stiffness in the mouse cornea in vivo. J Refract Surg 33(1):56–60PubMedGoogle Scholar
  49. 49.
    Hatami-Marbini H, Rahimi A (2016) Interrelation of hydration, collagen cross-linking treatment, and biomechanical properties of the cornea. Curr Eye Res 41(5):616.  https://doi.org/10.3109/02713683.2015.1042546 PubMedGoogle Scholar
  50. 50.
    Matteoli S, Virga A, Paladini I, Mencucci R, Corvi A (2016) Investigation into the elastic properties of ex vivo porcine corneas subjected to inflation test after cross-linking treatment. J Appl Biomater Funct Mater 14(2):e163–e170PubMedGoogle Scholar
  51. 51.
    Beshtawi IM, Akhtar R, Hillarby MC, O’Donnell C, Zhao X, Brahma A, Carley F, Derby B, Radhakrishnan H (2016) Biomechanical changes of collagen cross-linking on human keratoconic corneas using scanning acoustic microscopy. Curr Eye Res 41(5):609–615.  https://doi.org/10.3109/02713683.2015.1042545 PubMedGoogle Scholar
  52. 52.
    Seifert J, Hammer CM, Rheinlaender J, Sel S, Scholz M, Paulsen F, Schäffer TE (2014) Distribution of Young’s modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy. PLoS One 9(1):e88186.  https://doi.org/10.1371/journal.pone.0088186 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hayes S, Kamma-Lorger CS, Boote C, Young RD, Quantock AJ, Rost A, Khatib Y, Harris J, Yagi N, Terrill N (2013) The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS One 8(1):e52860PubMedPubMedCentralGoogle Scholar
  54. 54.
    Hayes S, Kamma-Lorger CS, Boote C, Young RD, Quantock AJ, Rost A, Khatib Y, Harris J, Yagi N, Terrill N, Meek KM (2013) The effect of riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS One 8(1):e52860.  https://doi.org/10.1371/journal.pone.0052860 PubMedPubMedCentralGoogle Scholar
  55. 55.
    Dias J, Diakonis VF, Kankariya VP, Yoo SH, Ziebarth NM (2013) Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment. Exp Eye Res 116:58–62.  https://doi.org/10.1016/j.exer.2013.07.028 PubMedGoogle Scholar
  56. 56.
    Akhtar S, Almubrad T, Paladini I, Mencucci R (2013) Keratoconus corneal architecture after riboflavin/ultraviolet A cross-linking: ultrastructural studies. Mol Vis 19:1526–1537PubMedPubMedCentralGoogle Scholar
  57. 57.
    Lanchares E, Buey M, Cristóbal J, Lavilla L, Calvo B (2011) Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Graefes Arch Clin Exp Ophthalmol 249(8):1223–1227.  https://doi.org/10.1007/s00417-011-1674-0 PubMedGoogle Scholar
  58. 58.
    Kling S, Remon L, Pérez-Escudero A, Merayo-Lloves J, Marcos S (2010) Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci 51(8):3961–3968.  https://doi.org/10.1167/iovs.09-4536 PubMedGoogle Scholar
  59. 59.
    Mencucci R, Marini M, Paladini I, Sarchielli E, Sgambati E, Menchini U, Vannelli GB (2010) Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Exp Ophthalmol 38(1):49–56.  https://doi.org/10.1111/j.1442-9071.2010.02207.x PubMedGoogle Scholar
  60. 60.
    Wollensak G, Iomdina E (2009) Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol 87(1):48–51.  https://doi.org/10.1111/j.1755-3768.2008.01190.x PubMedGoogle Scholar
  61. 61.
    Dhaliwal SJ, Kaufman CS (2009) Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas. Cornea 28(1):62–67.  https://doi.org/10.1097/ICO.0b013e31818225c3 PubMedGoogle Scholar
  62. 62.
    Bottós K, Dreyfuss J, Regatieri C, Lima-Filho A, Schor P, Nader H, Chamon W (2008) Immunofluorescence confocal microscopy of porcine corneas following collagen cross-linking treatment with riboflavin and ultraviolet A. J Refract Surg 24(7):S715–S719PubMedGoogle Scholar
  63. 63.
    Wollensak G, Redl B (2008) Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment. Cornea 27(3):353–356.  https://doi.org/10.1097/ICO.0b013e31815cf66a PubMedGoogle Scholar
  64. 64.
    Wollensak G, Iomdina E, Dittert D-D, Herbst H (2007) Wound healing in the rabbit cornea after corneal collagen cross-linking with riboflavin and UVA. Cornea 26(5):600–605.  https://doi.org/10.1097/ICO.0b013e318041f073 PubMedGoogle Scholar
  65. 65.
    Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE (2006) Biomechanical evidence of the distribution of cross-links in corneastreated with riboflavin and ultraviolet A light. J Cataract Refract Surg 32(2):279–283PubMedGoogle Scholar
  66. 66.
    Schilde T, Spoerl E, Kohlhaas M, Pillunat LE (2005) Depth dependence of stiffening on riboflavin/UVA treated corneas. Invest Ophth Vis Sci 46(13):4958–4958Google Scholar
  67. 67.
    Wollensak G, Spoerl E, Seiler T (2003) Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. J Cataract Refract Surg 29(9):1780–1785PubMedGoogle Scholar
  68. 68.
    Recalde IJ, Acera AA, Rodríguez-Agirretxe AI, Sánchez-Tena AM, San-Cristóbal AJ, Durán AJ (2017) Ocular surface disease parameters after collagen cross-linking for keratoconus. Cornea 36(2):148–152.  https://doi.org/10.1097/ICO.0000000000001085 PubMedGoogle Scholar
  69. 69.
    Tiveron MC Jr, Pena CRK, Hida RY, Moreira LB, Branco FRE, Kara-Junior N (2017) Topographic outcomes after corneal collagen crosslinking in progressive keratoconus: 1-year follow-up. Arq Bras Oftalmol 80(2):93–96PubMedGoogle Scholar
  70. 70.
    Höllhumer R, Watson S, Beckingsale P (2017) Persistent epithelial defects and corneal opacity after collagen cross-linking with substitution of dextran (T-500) with dextran sulfate in compounded topical riboflavin. Cornea 36(3):382–385.  https://doi.org/10.1097/ICO.0000000000001134 PubMedGoogle Scholar
  71. 71.
    Polat N, Gunduz A, Colak C (2017) The influence of corneal collagen cross-linking on anterior chamber in keratoconus. Indian J Ophthalmol 65(4):271–275.  https://doi.org/10.4103/ijo.IJO_948_16 PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kelkar JA, Kelkar AS, Arora ER, Bhaskar S, Kelkar MGS (2017) Prospective analysis of treatment of mild to moderate keratoconus without awaiting progression. Int Eye Sci 17(2):200–204.  https://doi.org/10.3980/j.issn.1672-5123.2017.2.02 Google Scholar
  73. 73.
    Kosekahya P, Koc M, Tekin K, Uzel M, Atilgan CU, Caglayan M, Yilmazbas P (2017) Evaluation of the shifting of the line of sight and higher order aberrations of eyes with keratoconus after corneal cross-linking. Cont Lens Anterior Eye 40(5):311–317.  https://doi.org/10.1016/j.clae.2017.03.006 PubMedGoogle Scholar
  74. 74.
    Toprak I, Yaylali V, Yildirim C (2017) Visual, topographic, and pachymetric effects of pediatric corneal collagen cross-linking. J Pediatr Ophthalmol Strabismus 54(2):84–89.  https://doi.org/10.3928/01913913-20160831-01 PubMedGoogle Scholar
  75. 75.
    Parissi M, Randjelovic S, Poletti E, Guimaraes P, Ruggeri A, Fragkiskou S, Wihlmark TB, Utheim TP, Lagali N (2016) Corneal nerve regeneration after collagen cross-linking treatment of keratoconus: a 5-year longitudinal study. JAMA Ophthalmol 134(1):70–78.  https://doi.org/10.1001/jamaophthalmol.2015.4518 PubMedGoogle Scholar
  76. 76.
    Pang X, Peng X, Fan Z, Jia H, Wu T (2016) Comparison of central corneal thickness using ultrasound pachymetry during corneal collagen cross-linking. Eye Sci 28(1):15–19Google Scholar
  77. 77.
    Kim TG, Kim KY, Han JB, Jin KH (2016) The long-term clinical outcome after corneal collagen cross-linking in Korean patients with progressive keratoconus. Korean J Ophthalmol 30(5):326–334PubMedPubMedCentralGoogle Scholar
  78. 78.
    Giacomin NT, Netto MV, Torricelli AAM, Marino GK, Bechara SJ, Espindola RF, Santhiago MR (2016) Corneal collagen cross-linking in advanced keratoconus: a 4-year follow-up study. J Refract Surg 32(7):459–465.  https://doi.org/10.3928/1081597X-20160429-01 PubMedGoogle Scholar
  79. 79.
    Lang SJ, Messmer EM, Geerling G, Mackert MJ, Brunner T, Dollak S, Kutchoukov B, Böhringer D, Reinhard T, Maier P (2015) Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus. BMC Ophthalmology 15 (1):78.  https://doi.org/10.1186/s12886-015-0070-7 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Poli M, Lefevre A, Auxenfans C, Burillon C (2015) Corneal collagen cross-linking for the treatment of progressive corneal ectasia: 6-year prospective outcome in a French population. Am J Ophthalmol 160(4):654–662e651.  https://doi.org/10.1016/j.ajo.2015.06.027 PubMedGoogle Scholar
  81. 81.
    Malta NJB, Renesto CA, Moscovici KB, Soong KH, Campos KM (2015) Stromal Demarcation Line Induced by Corneal Cross-linking in Eyes With Keratoconus and Nonkeratoconic Asymmetric Topography. Cornea 34 (2):199-203.  https://doi.org/10.1097/ICO.0000000000000305 PubMedGoogle Scholar
  82. 82.
    De Bernardo M, Capasso L, Lanza M, Tortori A, Iaccarino S, Cennamo M, Borrelli M, Rosa N (2015) Long-term results of corneal collagen crosslinking for progressive keratoconus. J Optom 8(3):180–186.  https://doi.org/10.1016/j.optom.2014.05.006 PubMedGoogle Scholar
  83. 83.
    Sedaghat M, Bagheri M, Ghavami S, Bamdad S (2015) Changes in corneal topography and biomechanical properties after collagen cross linking for keratoconus: 1-year results. Middle East Afr J Ophthalmol 22(2):212–219.  https://doi.org/10.4103/0974-9233.151877 PubMedPubMedCentralGoogle Scholar
  84. 84.
    Khan WA, Zaheer N, Khan S (2015) Corneal collagen cross-linking for keratoconus: results of 3-year follow-up in Pakistani population. Can J Ophthalmol 50(2):143–150.  https://doi.org/10.1016/j.jcjo.2014.11.003 PubMedGoogle Scholar
  85. 85.
    Viswanathan D, Kumar NL, Males JJ (2014) Outcome of corneal collagen crosslinking for progressive keratoconus in paediatric patients. Biomed Res Int 2014:140461.  https://doi.org/10.1155/2014/140461 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kymionis GD, Grentzelos MA, Plaka AD, Stojanovic N, Tsoulnaras KI, Mikropoulos DG, Rallis KI, Kankariya VP (2013) Evaluation of the corneal collagen cross-linking demarcation line profile using anterior segment optical coherence tomography. Cornea 32(7):907–910.  https://doi.org/10.1097/ICO.0b013e31828733ea PubMedGoogle Scholar
  87. 87.
    Kumar Kodavoor S, Arsiwala AZ, Ramamurthy D (2014) One-year clinical study on efficacy of corneal cross-linking in Indian children with progressive keratoconus. Cornea 33(9):919–922.  https://doi.org/10.1097/ico.0000000000000197 PubMedGoogle Scholar
  88. 88.
    Steinberg JJ, Ahmadiyar JM, Rost JA, Frings JA, Filev JF, Katz JT, Linke JS (2014) Anterior and posterior corneal changes after crosslinking for keratoconus. Optom Vis Sci 91(2):178–186.  https://doi.org/10.1097/OPX.0000000000000141 PubMedGoogle Scholar
  89. 89.
    Goldich Y, Barkana Y, Wussuku Lior O, Marcovich AL, Hirsh A, Avni I, Zadok D (2014) Corneal collagen cross-linking for the treatment of progressive keratoconus: 3-year prospective outcome. Can J Ophthalmol 49(1):54–59.  https://doi.org/10.1016/j.jcjo.2013.09.002 PubMedGoogle Scholar
  90. 90.
    Kránitz K, Kovács I, Miháltz K, Sándor GL, Juhász É, Gyenes A, Nagy ZZ (2014) Changes of Corneal Topography Indices After CXL in Progressive Keratoconus Assessed by Scheimpflug Camera. J Refract Surg 30 (6):374-378.  https://doi.org/10.3928/1081597X-20140401-01 PubMedGoogle Scholar
  91. 91.
    Ghanem CR, Santhiago RM, Berti VT, Netto CM, Ghanem CV (2014) Topographic, corneal wavefront, and refractive outcomes 2 years after collagen crosslinking for progressive keratoconus. Cornea 33(1):43–48.  https://doi.org/10.1097/ICO.0b013e3182a9fbdf PubMedGoogle Scholar
  92. 92.
    Wittig-Silva C, Chan E, Islam FMA, Wu T, Whiting M, Snibson GR (2014) A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus. Ophthalmology 121(4):812–821.  https://doi.org/10.1016/j.ophtha.2013.10.028 PubMedGoogle Scholar
  93. 93.
    O’Brart DPS, Kwong TQ, Patel P, McDonald RJ, O’Brart NA (2013) Long-term follow-up of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linking to halt the progression of keratoconus. Br J Ophthalmol 97(4):433–437.  https://doi.org/10.1136/bjophthalmol-2012-302556 PubMedGoogle Scholar
  94. 94.
    Legare ME, Iovieno A, Yeung SN, Kim P, Lichtinger A, Hollands S, Slomovic AR, Rootman DS (2013) Corneal collagen cross-linking using riboflavin and ultraviolet A for the treatment of mild to moderate keratoconus: 2-year follow-up. Can J Ophthalmol 48(1):64–68.  https://doi.org/10.1016/j.jcjo.2012.11.007 Google Scholar
  95. 95.
    Vinciguerra R, Romano MR, Camesasca FI, Azzolini C, Trazza S, Morenghi E, Vinciguerra P (2013) Corneal cross-linking as a treatment for keratoconus. Ophthalmology 120(5):908–916.  https://doi.org/10.1016/j.ophtha.2012.10.023 PubMedGoogle Scholar
  96. 96.
    Rechichi M, Daya S, Scorcia V, Meduri A, Scorcia G (2013) Epithelial-disruption collagen crosslinking for keratoconus: one-year results. J Cataract Refract Surg 39(8):1171–1178.  https://doi.org/10.1016/j.jcrs.2013.05.022 PubMedGoogle Scholar
  97. 97.
    Hashemi H, Seyedian MA, Miraftab M, Fotouhi A, Asgari S (2013) Corneal collagen cross-linking with riboflavin and ultraviolet A irradiation for keratoconus. Ophthalmology 120(8):1515–1520.  https://doi.org/10.1016/j.ophtha.2013.01.012 PubMedGoogle Scholar
  98. 98.
    Lamy R, Chan E, Zhang H, Salgaonkar VA, Good SD, Porco TC, Diederich CJ, Stewart JM (2013) Ultrasound-enhanced penetration of topical riboflavin into the corneal stromaultrasound treatment and corneal riboflavin permeation. Invest Ophthalmol Vis Sci 54(8):5908–5912.  https://doi.org/10.1167/iovs.13-12133 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Ivarsen A, Hjortdal J (2013) Collagen cross-linking for advanced progressive keratoconus. Cornea 32 (7):903.  https://doi.org/10.1097/ICO.0b013e31828321dd PubMedGoogle Scholar
  100. 100.
    Viswanathan D, Males J (2013) Prospective longitudinal study of corneal collagen cross-linking in progressive keratoconus. Clin Exp Ophthalmol 41(6):531–536.  https://doi.org/10.1111/ceo.12035 PubMedGoogle Scholar
  101. 101.
    Poli M, Cornut P-L, Balmitgere T, Aptel F, Janin H, Burillon C (2013) Prospective study of corneal collagen cross-linking efficacy and tolerance in the treatment of keratoconus and corneal ectasia: 3-year results. Cornea 32 (5):583.  https://doi.org/10.1097/ICO.0b013e31825e8414 PubMedGoogle Scholar
  102. 102.
    Chatzis N, Hafezi F (2012) Progression of keratoconus and efficacy of corneal collagen cross-linking in children and adolescents. J Refract Surg 28(11):753–758.  https://doi.org/10.3928/1081597X-20121011-01 PubMedGoogle Scholar
  103. 103.
    Kránitz K, Kovács I, Miháltz K, Sándor GL, Knorz MC, Németh J, Nagy ZZ (2012) Corneal changes in progressive keratoconus after cross-linking assessed by Scheimpflug camera. J Refract Surg 28(9):645–649.  https://doi.org/10.3928/1081597X-20120823-01 PubMedGoogle Scholar
  104. 104.
    Arora R, Gupta D, Goyal JL, Jain P (2012) Results of corneal collagen cross-linking in pediatric patients. J Refract Surg 28(11):759–762.  https://doi.org/10.3928/1081597X-20121011-02 PubMedGoogle Scholar
  105. 105.
    Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Denaro R, Balestrazzi A (2012) Riboflavin-UVA-induced corneal collagen cross-linking in pediatric patients. Cornea 31(3):227–231.  https://doi.org/10.1097/ICO.0b013e31822159f6 PubMedGoogle Scholar
  106. 106.
    Greenstein SA, Shah VP, Fry KL, Hersh PS (2011) Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg 37(4):691–700.  https://doi.org/10.1016/j.jcrs.2010.10.052 PubMedGoogle Scholar
  107. 107.
    Hersh PS, Greenstein SA, Fry KL (2011) Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg 37(1):149–160.  https://doi.org/10.1016/j.jcrs.2010.07.030 PubMedGoogle Scholar
  108. 108.
    Spoerl E, Terai N, Scholz F, Raiskup F, Pillunat LE (2011) Detection of biomechanical changes after corneal cross-linking using ocular response analyzer software. J Refract Surg 27(6):452–457.  https://doi.org/10.3928/1081597X-20110106-01 PubMedGoogle Scholar
  109. 109.
    O’Brart DPS, Chan E, Samaras K, Patel P, Shah SP (2011) A randomised, prospective study to investigate the efficacy of riboflavin/ultraviolet A (370 nm) corneal collagen cross-linkage to halt the progression of keratoconus. Br J Ophthalmol 95(11):1519–1524.  https://doi.org/10.1136/bjo.2010.196493 PubMedGoogle Scholar
  110. 110.
    Caporossi A, Mazzotta C, Baiocchi S, Caporossi T (2010) Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena Eye Cross Study. Am J Ophthalmol 149(4):585–593.  https://doi.org/10.1016/j.ajo.2009.10.021 PubMedGoogle Scholar
  111. 111.
    Sinha R, Gupta N, Sharma N, Gupta R, Titiyal J (2010) Keratoconus: A review of presentation patterns. Indian J Ophthalmol 58 (3):263–268Google Scholar
  112. 112.
    Sedaghat M, Naderi M, Zarei-Ghanavati M (2010) Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis. J Cataract Refract Surg 36(10):1728–1731.  https://doi.org/10.1016/j.jcrs.2010.06.056 PubMedGoogle Scholar
  113. 113.
    Wernli J, Schumacher S, Spoerl E, Mrochen M (2013) The efficacy of corneal cross-linking shows a sudden decrease with very high intensity UV light and short treatment time corneal cross-linking efficacy. Invest Ophthalmol Vis Sci 54(2):1176–1180PubMedGoogle Scholar
  114. 114.
    Hafezi F, Mrochen M, Iseli HP, Seiler T (2009) Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg 35(4):621–624.  https://doi.org/10.1016/j.jcrs.2008.10.060 PubMedGoogle Scholar
  115. 115.
    Søndergaard AP, Hjortdal J, Breitenbach T, Ivarsen A (2010) Corneal distribution of riboflavin prior to collagen cross-linking. Curr Eye Res 35(2):116–121PubMedGoogle Scholar
  116. 116.
    Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH (2013) Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus brillouin microscopy of collagen crosslinking. Invest Ophthalmol Vis Sci 54(2):1418–1425.  https://doi.org/10.1167/iovs.12-11387 PubMedPubMedCentralGoogle Scholar
  117. 117.
    Seiler TG, Fischinger I, Senfft T, Schmidinger G, Seiler T (2014) Intrastromal application of riboflavin for corneal crosslinking intrastromal application. Invest Ophthalmol Vis Sci 55(7):4261–4265.  https://doi.org/10.1167/iovs.14-14021 PubMedGoogle Scholar
  118. 118.
    Hatami-Marbini H, Rahimi A (2015) Stiffening effects of riboflavin/UVA corneal collagen cross-linking is hydration dependent. J Biomech 48(6):1052–1057.  https://doi.org/10.1016/j.jbiomech.2015.01.038 PubMedGoogle Scholar
  119. 119.
    Schumacher S, Oeftiger L, Mrochen M (2011) Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. Invest Ophthalmol Vis Sci 52(12):9048–9052PubMedGoogle Scholar
  120. 120.
    Choi S, Lee S-C, Lee H-J, Cheong Y, Jung G-B, Jin K-H, Park H-K (2013) Structural response of human corneal and scleral tissues to collagen cross-linking treatment with riboflavin and ultraviolet A light. Lasers Med Sci 28(5):1289–1296.  https://doi.org/10.1007/s10103-012-1237-6 PubMedGoogle Scholar
  121. 121.
    Mazzotta C, Balestrazzi A, Traversi C, Baiocchi S, Caporossi T, Tommasi C, Caporossi A (2007) Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg retinal tomograph II in vivo confocal microscopy in humans. Cornea 26(4):390–397.  https://doi.org/10.1097/ICO.0b013e318030df5a PubMedGoogle Scholar
  122. 122.
    Wollensak G, Spoerl E, Wilsch M, Seiler T (2004) Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 23(1):43–49PubMedGoogle Scholar
  123. 123.
    Mackiewicz TZ, Määttä TM, Stenman TM, Konttinen TL, Tervo TT, Konttinen TY (2006) Collagenolytic proteinases in keratoconus. Cornea 25(5):603–610.  https://doi.org/10.1097/01.ico.0000208820.32614.00 PubMedGoogle Scholar
  124. 124.
    Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE (2008) Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg 34(5):796–801.  https://doi.org/10.1016/j.jcrs.2007.12.039 PubMedGoogle Scholar
  125. 125.
    Braun E, Kanellopoulos J, Pe L, Jankov M (2005) Riboflavin/ultraviolet A-induced collagen cross-linking in the management of keratoconus. Invest Ophth Vis Sci 46(13):4964–4964Google Scholar
  126. 126.
    Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116(3):369–378.  https://doi.org/10.1016/j.ophtha.2008.09.048 PubMedGoogle Scholar
  127. 127.
    Agrawal VB (2009) Corneal collagen cross-linking with riboflavin and ultraviolet-A light for keratoconus: results in Indian eyes. Indian J Ophthalmol 57(2):111–114.  https://doi.org/10.4103/0301-4738.44515 PubMedPubMedCentralGoogle Scholar
  128. 128.
    Tu K, Aslanides I (2009) Orbscan II anterior elevation changes following corneal collagen cross-linking treatment for keratoconus. J Refract Surg 25(8):715–722PubMedGoogle Scholar
  129. 129.
    Goldich Y, Barkana Y, Morad Y, Hartstein M, Avni I, Zadok D (2009) Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?—a pilot study. Cornea 28(5):498–502.  https://doi.org/10.1097/ICO.0b013e318190734d PubMedGoogle Scholar
  130. 130.
    Piñero DP, Alió JL, Alesón A, Vergara ME, Miranda M (2010) Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J Cataract Refract Surg 36(5):814–825.  https://doi.org/10.1016/j.jcrs.2009.11.012 PubMedGoogle Scholar
  131. 131.
    Grewal DS, Brar GS, Jain R, Sood V, Singla M, Grewal SPS (2009) Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus: one year analysis using Scheimpflug imaging. J Cataract Refract Surg 35(3):425–432.  https://doi.org/10.1016/j.jcrs.2008.11.046 PubMedGoogle Scholar
  132. 132.
    Kymionis GD, Kounis GA, Portaliou DM, Grentzelos MA, Karavitaki AE, Coskunseven E, Jankov MR, Pallikaris IG (2009) Intraoperative pachymetric measurements during corneal collagen cross-linking with riboflavin and ultraviolet A irradiation. Ophthalmology 116(12):2336–2339.  https://doi.org/10.1016/j.ophtha.2009.09.018 PubMedGoogle Scholar
  133. 133.
    Mazzotta C, Traversi C, Baiocchi S, Caporossi O, Bovone C, Sparano MC, Balestrazzi A, Caporossi A (2008) Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol 146(4):527–533.  https://doi.org/10.1016/j.ajo.2008.05.042 PubMedGoogle Scholar
  134. 134.
    Kontadakis GA, Kymionis GD, Kankariya VP, Pallikaris AI (2013) Effect of corneal collagen cross-linking on corneal innervation, corneal sensitivity, and tear function of patients with keratoconus. Ophthalmology 120(5):917–922.  https://doi.org/10.1016/j.ophtha.2012.10.012 PubMedGoogle Scholar
  135. 135.
    Dogru M, Karakaya H, Özçetin H, Ertürk H, Yücel A, Özmen A, Baykara M, Tsubota K (2003) Tear function and ocular surface changes in keratoconus. Ophthalmology 110(6):1110–1118.  https://doi.org/10.1016/S0161-6420(03)00261-6 PubMedGoogle Scholar
  136. 136.
    Iseli HP, Popp M, Seiler T, Spoerl E, Mrochen M (2011) Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm). J Refract Surg 27(3):195–201PubMedGoogle Scholar
  137. 131.
    Schumacher S, Mrochen M, Spoerl E (2012) Absorption of UV-light by riboflavin solutions with different concentration. J Refract Surg 28(2):91–92.  https://doi.org/10.3928/1081597X-20120117-01 PubMedGoogle Scholar
  138. 138.
    Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A (2009) Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg 35(5):893–899PubMedGoogle Scholar
  139. 139.
    Mencucci R, Mazzotta C, Rossi F, Ponchietti C, Pini R, Baiocchi S, Caporossi A, Menchini U (2007) Riboflavin and ultraviolet A collagen crosslinking: in vivo thermographic analysis of the corneal surface. J Cataract Refract Surg 33(6):1005–1008.  https://doi.org/10.1016/j.jcrs.2007.03.021 PubMedGoogle Scholar
  140. 140.
    Mark T, Ngounou F, Tamon J, Marx-Gross S, Preussner P-R (2014) Modulatory effect of different riboflavin compositions on the central corneal thickness of African keratoconus corneas during collagen crosslinking. Middle East Afr J Ophthalmol 21(1):66–71.  https://doi.org/10.4103/0974-9233.124103 PubMedPubMedCentralGoogle Scholar
  141. 141.
    Sharma N, Maharana P, Singh G, Titiyal JS (2010) Pseudomonas keratitis after collagen crosslinking for keratoconus: case report and review of literature. J Cataract Refract Surg 36(3):517–520PubMedGoogle Scholar
  142. 142.
    Zamora KV, Males JJ (2009) Polymicrobial keratitis after a collagen cross-linking procedure with postoperative use of a contact lens: a case report. Cornea 28(4):474–476PubMedGoogle Scholar
  143. 143.
    Pollhammer M, Cursiefen C (2009) Bacterial keratitis early after corneal crosslinking with riboflavin and ultraviolet-A. J Cataract Refract Surg 35(3):588–589.  https://doi.org/10.1016/j.jcrs.2008.09.029 PubMedGoogle Scholar
  144. 144.
    Pérez-Santonja JJ, Artola A, Javaloy J, Alió JL, Abad JL (2009) Microbial keratitis after corneal collagen crosslinking. J Cataract Refract Surg 35(6):1138–1140.  https://doi.org/10.1016/j.jcrs.2009.01.036 PubMedGoogle Scholar
  145. 145.
    Yildirim Y, Olcucu O, Gunaydin ZK, Agca A, Ozgurhan EB, Alagoz C, Mutaf C, Demirok A (2017) Comparison of accelerated corneal collagen cross-linking types for treating keratoconus. Curr Eye Res 42(7):971–975.  https://doi.org/10.1080/02713683.2017.1284241 PubMedGoogle Scholar
  146. 146.
    Kymionis GD, Kontadakis GA, Hashemi KK (2017) Accelerated versus conventional corneal crosslinking for refractive instability: an update. Curr Opin Ophthalmol 28(4):343–347.  https://doi.org/10.1097/ICU.0000000000000375 PubMedGoogle Scholar
  147. 147.
    Mazzotta C, Baiocchi S, Bagaglia SA, Fruschelli M, Meduri A, Rechichi M (2017) Accelerated 15 mW pulsed-light crosslinking to treat progressive keratoconus: two-year clinical results. J Cataract Refract Surg 43(8):1081–1088.  https://doi.org/10.1016/j.jcrs.2017.05.030 PubMedGoogle Scholar
  148. 148.
    Mazzotta C, Traversi C, Paradiso AL, Latronico ME, Rechichi M (2014) Pulsed light accelerated crosslinking versus continuous light accelerated crosslinking: one-year results. J Ophthalmol 2014(3).  https://doi.org/10.1155/2014/604731
  149. 143.
    Mazzotta C, Traversi C, Caragiuli S, Rechichi M (2014) Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye 28(10):1179–1183.  https://doi.org/10.1038/eye.2014.163 PubMedPubMedCentralGoogle Scholar
  150. 150.
    Hammer A, Richoz O, Mosquera SA, Tabibian D, Hoogewoud F, Hafezi F (2014) Corneal biomechanical properties at different corneal cross-linking (CXL) irradiancescorneal biomechanics at higher UV-A irradiances. Invest Ophthalmol Vis Sci 55(5):2881–2884PubMedGoogle Scholar
  151. 145.
    Dai J, Chu R, Zhou X, Chen C, Qu X, Wang X (2006) One-year outcomes of epi-LASIK for myopia. J Refract Surg 22(6):589–595PubMedGoogle Scholar
  152. 152.
    Artola A, Pinero DP, Ruiz-Fortes P, Soto-Negro R, Perez-Cambrodi RJ (2017) Clinical outcomes at one year following keratoconus treatment with accelerated transepithelial cross-linking. Int J Ophthalmol 10(4):652–655.  https://doi.org/10.18240/ijo.2017.04.24 PubMedPubMedCentralGoogle Scholar
  153. 153.
    Aixinjueluo W, Usui T, Miyai T, Toyono T, Sakisaka T, Yamagami S (2017) Accelerated transepithelial corneal cross-linking for progressive keratoconus: a prospective study of 12 months. Br J Ophthalmol 101(9):1244–1249.  https://doi.org/10.1136/bjophthalmol-2016-309775 PubMedGoogle Scholar
  154. 154.
    Çınar Y, Cingü AK, Türkcü FM, Çınar T, Yüksel H, Özkurt ZG, Çaça I (2014) Comparison of accelerated and conventional corneal collagen cross-linking for progressive keratoconus. Cutan Ocul Toxicol 33(3):218–222PubMedGoogle Scholar
  155. 155.
    Sadoughi MM, Einollahi B, Baradaran-Rafii A, Roshandel D, Hasani H, Nazeri M (2016) Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intrapatient comparative study. Int Ophthalmol:1–8.  https://doi.org/10.1007/s10792-016-0423-0
  156. 156.
    Tomita M, Mita M, Huseynova T (2014) Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg 40(6):1013–1020PubMedGoogle Scholar
  157. 157.
    Razmjoo H, Peyman A, Rahimi A, Modrek HJ (2017) Cornea collagen cross-linking for keratoconus: a comparison between accelerated and conventional methods. Adv Biomed Res 6:10.  https://doi.org/10.4103/2277-9175.200785 PubMedPubMedCentralGoogle Scholar
  158. 158.
    Brittingham S, Tappeiner C, Frueh BE (2014) Corneal cross-linking in keratoconus using the standard and rapid treatment protocol: differences in demarcation line and 12-month outcomes standard versus rapid cross-linking treatment. Invest Ophthalmol Vis Sci 55(12):8371–8376PubMedGoogle Scholar
  159. 159.
    Chow VW, Chan TC, Yu M, Wong VW, Jhanji V (2015) One-year outcomes of conventional and accelerated collagen crosslinking in progressive keratoconus. Sci Rep 5:14425.  https://doi.org/10.1038/srep14425 PubMedPubMedCentralGoogle Scholar
  160. 160.
    Hashemi H, Miraftab M, Seyedian MA, Hafezi F, Bahrmandy H, Heidarian S, Amanzadeh K, Nikbin H, Fotouhi A, Asgari S (2015) Long-term results of an accelerated corneal cross-linking protocol (18 mW/cm(2)) for the treatment of progressive keratoconus. Am J Ophthalmol 160(6):1164–1170.  https://doi.org/10.1016/j.ajo.2015.08.027 PubMedGoogle Scholar
  161. 161.
    Thorsrud A, Sandvik GF, Hagem AM, Drolsum L (2017) Measuring the depth of crosslinking demarcation line in vivo: comparison of methods and devices. J Cataract Refract Surg 43(2):255–262.  https://doi.org/10.1016/j.jcrs.2017.01.003 PubMedGoogle Scholar
  162. 162.
    Seiler T, Hafezi F (2006) Corneal cross-linking-induced stromal demarcation line. Cornea 25(9):1057–1059.  https://doi.org/10.1097/01.ico.0000225720.38748.58 PubMedGoogle Scholar
  163. 163.
    Mazzotta C, Balestrazzi A, Baiocchi S, Traversi C, Caporossi A (2007) Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation. J Clin Exp Ophthalmol 35(6):580–582.  https://doi.org/10.1111/j.1442-9071.2007.01536.x Google Scholar
  164. 164.
    Kymionis GD, Tsoulnaras KI, Liakopoulos DA, Skatharoudi CA, Grentzelos MA, Tsakalis NG (2016) Corneal stromal demarcation line depth following standard and a modified high intensity corneal cross-linking protocol. J Refract Surg 32(4):218–222PubMedGoogle Scholar
  165. 165.
    Bozkurt E, Ozgurhan EB, Akcay BIS, Kurt T, Yildirim Y, Gunaydin ZK, Demirok A (2017) Refractive, topographic, and aberrometric results at 2-year follow-up for accelerated corneal cross-link for progressive keratoconus. J Ophthalmol 2017:5714372.  https://doi.org/10.1155/2017/5714372 PubMedPubMedCentralGoogle Scholar
  166. 166.
    Zhang X, Sun L, Chen Y, Li M, Tian M, Zhou X (2016) One-year outcomes of pachymetry and epithelium thicknesses after accelerated (45 mW/cm(2)) transepithelial corneal collagen cross-linking for keratoconus patients. Sci Rep 6:32692.  https://doi.org/10.1038/srep32692 PubMedPubMedCentralGoogle Scholar
  167. 167.
    Mencucci R, Mazzotta C, Corvi A, Terracciano L, Rechichi M, Matteoli S (2015) In vivo thermographic analysis of the corneal surface in keratoconic patients undergoing riboflavin–UV-A accelerated cross-linking. Cornea 34(3):323–327PubMedGoogle Scholar
  168. 168.
    Kurt T, Ozgurhan EB, Yildirim Y, Akcay BIS, Cosar MG, Bozkurt E, Taskapili M (2016) Accelerated (18 mW/cm2) corneal cross-linking for progressive keratoconus: 18-month results. J Ocul Pharmacol Ther 32(4):186–191PubMedGoogle Scholar
  169. 169.
    Pahuja N, Kumar NR, Francis M, Shanbagh S, Shetty R, Ghosh A, Roy AS (2016) Correlation of clinical and biomechanical outcomes of accelerated crosslinking (9 mW/cm2 in 10 minutes) in keratoconus with molecular expression of ectasia-related genes. Curr Eye Res 41(11):1419–1423PubMedGoogle Scholar
  170. 170.
    Badawi AE (2017) Accelerated corneal collagen cross-linking in pediatric keratoconus: one year study. Saudi J Ophthalmol 31(1):11–18.  https://doi.org/10.1016/j.sjopt.2017.01.002 PubMedPubMedCentralGoogle Scholar
  171. 171.
    Filippello M, Stagni E, O’Brart D (2012) Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg 38(2):283–291PubMedGoogle Scholar
  172. 172.
    Mencucci R, Paladini I, Sarchielli E, Favuzza E, Vannelli GB, Marini M (2013) Transepithelial riboflavin/ultraviolet. A corneal cross-linking in keratoconus: morphologic studies on human corneas. Am J Ophthalmol 156(5):874–884e871.  https://doi.org/10.1016/j.ajo.2013.06.025 PubMedGoogle Scholar
  173. 173.
    Hayes S, Morgan SR, O’Brart DP, O’Brart N, Meek KM (2016) A study of stromal riboflavin absorption in ex vivo porcine corneas using new and existing delivery protocols for corneal cross-linking. Acta Ophthalmol 94(2):109–117.  https://doi.org/10.1111/aos.12884 Google Scholar
  174. 174.
    Spadea L, Mencucci R (2012) Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas. Clin Ophthalmol 6:1785–1792.  https://doi.org/10.2147/opth.s37335 PubMedPubMedCentralGoogle Scholar
  175. 175.
    Heikal MA, Soliman TT, Fayed A, Hamed AM (2017) Efficacy of transepithelial corneal collagen crosslinking for keratoconus: 12-month follow-up. Clin Ophthalmol 11:767–771.  https://doi.org/10.2147/OPTH.S129037 PubMedPubMedCentralGoogle Scholar
  176. 176.
    Ameen SS, Mehboob MA, Ali K (2016) Efficacy and safety of transepithelial collagen cross linking for progressive keratoconus. Pak J Med Sci 32(5):1111–1115.  https://doi.org/10.12669/pjms.325.10922 PubMedPubMedCentralGoogle Scholar
  177. 177.
    Spadea L, Salvatore S, Paroli MP, Vingolo EM (2015) Recovery of corneal sensitivity after collagen crosslinking with and without epithelial debridement in eyes with keratoconus. J Cataract Refract Surg 41(3):527–532.  https://doi.org/10.1016/j.jcrs.2014.06.030 PubMedGoogle Scholar
  178. 178.
    Kimura K, Teranishi S, Kawamoto K, Nishida T (2010) Protection of human corneal epithelial cells from hypoxia-induced disruption of barrier function by hepatocyte growth factor. Exp Eye Res 90(2):337–343.  https://doi.org/10.1016/j.exer.2009.11.012 PubMedGoogle Scholar
  179. 179.
    Mannermaa E, Vellonen K-S, Urtti A (2006) Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58(11):1136–1163PubMedGoogle Scholar
  180. 180.
    Torricelli AAM, Ford MR, Singh V, Santhiago MR, Dupps Jr WJ, Wilson SE (2014) BAC-EDTA transepithelial riboflavin-UVA crosslinking has greater biomechanical stiffening effect than standard epithelium-off in rabbit corneas. Exp Eye Res 125:114–117.  https://doi.org/10.1016/j.exer.2014.06.001 PubMedPubMedCentralGoogle Scholar
  181. 181.
    Acar BT, Utine CA, Ozturk V, Acar S, Ciftci F (2014) Can the effect of transepithelial corneal collagen cross-linking be improved by increasing the duration of topical riboflavin application? An in vivo confocal microscopy study. Eye & Contact Lens 40(4):207–212.  https://doi.org/10.1097/icl.0000000000000036 Google Scholar
  182. 182.
    Mastropasqua L, Lanzini M, Curcio C, Calienno R, Mastropasqua R, Colasante M, Mastropasqua A, Nubile M (2014) Structural modifications and tissue response after standard epi-off and iontophoretic corneal crosslinking with different irradiation procedures. Invest Ophthalmol Vis Sci 55(4):2526–2533.  https://doi.org/10.1167/iovs.13-13363 PubMedGoogle Scholar
  183. 183.
    Lafond M, Aptel F, Mestas J-L, Lafon C (2017) Ultrasound-mediated ocular delivery of therapeutic agents: a review. Expert Opin Drug Deliv 14(4):539–550PubMedGoogle Scholar
  184. 184.
    Kanellopoulos AJ (2009) Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J Refract Surg 25(11):1034–1037PubMedGoogle Scholar
  185. 185.
    Cruzat A, Shukla AN, Arafat SN, Alageel S, Colon C, Chodosh J, Ciolino JB (2017) Ex vivo study of transepithelial corneal cross-linking. J Refract Surg 33(3):171–177.  https://doi.org/10.3928/1081597X-20161206-04 PubMedGoogle Scholar
  186. 186.
    Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, Prausnitz MR (2007) Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 48(9):4038–4043.  https://doi.org/10.1167/iovs.07-0066 PubMedGoogle Scholar
  187. 187.
    Labate C, Lombardo M, Lombardo G, De Santo MP (2017) Biomechanical strengthening of the human cornea induced by nanoplatform-based transepithelial riboflavin/UV-A corneal cross-linking. Invest Ophthalmol Vis Sci 58(1):179–184.  https://doi.org/10.1167/iovs.16-20813 PubMedGoogle Scholar
  188. 188.
    Badawi AE (2016) Visual and topographic impacts of trans-epithelial versus epithelium-off corneal collagen cross-linking in adult keratoconus. Journal of Eye and Ophthalmology 3(1):1.  https://doi.org/10.7243/2055-2408-3-1 Google Scholar
  189. 189.
    Yousef H (2016) A comparative study between epithelium-on and epithelium-off collagen cross-linking with riboflavin and ultraviolet radiation in the treatment of early keratoconus. Journal of the Egyptian Ophthalmological Society 109(3):109.  https://doi.org/10.4103/2090-0686.202256 Google Scholar
  190. 190.
    Eraslan M, Toker E, Cerman E, Ozarslan D (2017) Efficacy of epithelium-off and epithelium-on corneal collagen cross-linking in pediatric keratoconus. Eye & Contact Lens 43(3):155–161.  https://doi.org/10.1097/icl.0000000000000255 Google Scholar
  191. 191.
    Aldahlawi NH, Hayes S, O’Brart DPS, O’Brart ND, Meek KM (2016) An investigation into corneal enzymatic resistance following epithelium-off and epithelium-on corneal cross-linking protocols. Exp Eye Res 153:141–151.  https://doi.org/10.1016/j.exer.2016.10.014 PubMedPubMedCentralGoogle Scholar
  192. 192.
    Gatzioufas Z, Raiskup F, O’Brart D, Spoerl E, Panos GD, Hafezi F (2016) Transepithelial corneal cross-linking using an enhanced riboflavin solution. J Refract Surg 32(6):372–377PubMedGoogle Scholar
  193. 193.
    Chang SW, Chi RF, Wu CC, Su MJ (2000) Benzalkonium chloride and gentamicin cause a leak in corneal epithelial cell membrane. Exp Eye Res 71(1):3–10.  https://doi.org/10.1006/exer.2000.0849 PubMedGoogle Scholar
  194. 194.
    Cha SH, Lee JS, Oum BS, Kim CD (2004) Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro. Clin Exp Ophthalmol 32(2):180–184.  https://doi.org/10.1111/j.1442-9071.2004.00782.x PubMedGoogle Scholar
  195. 195.
    Uematsu M, Kumagami T, Kusano M, Yamada K, Mishima K, Fujimura K, Sasaki H, Kitaoka T (2007) Acute corneal epithelial change after instillation of benzalkonium chloride evaluated using a newly developed in vivo corneal transepithelial electric resistance measurement method. Ophthalmic Res 39(6):308–314PubMedGoogle Scholar
  196. 196.
    Saettone MF, Chetoni P, Cerbai R, Mazzanti G, Braghiroli L (1996) Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity. Int J Pharm 142(1):103–113Google Scholar
  197. 197.
    Nakamura T, Yamada M, Teshima M, Nakashima M, To H, Ichikawa N, Sasaki H (2007) Electrophysiological characterization of tight junctional pathway of rabbit cornea treated with ophthalmic ingredients. Biol Pharm Bull 30(12):2360–2364PubMedGoogle Scholar
  198. 198.
    Caruso C, Ostacolo C, Epstein RL, Barbaro G, Troisi S, Capobianco D (2016) Transepithelial corneal cross-linking with vitamin E-enhanced riboflavin solution and abbreviated, low-dose UV-A: 24-month clinical outcomes. Cornea 35(2):145–150.  https://doi.org/10.1097/ICO.0000000000000699 PubMedGoogle Scholar
  199. 199.
    Rathore MS, Majumdar DK (2006) Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops. AAPS PharmSciTech 7(3):57.  https://doi.org/10.1208/pt070357 PubMedGoogle Scholar
  200. 200.
    Mohanty B, Mishra SK, Majumdar DK (2013) Effect of formulation factors on in vitro transcorneal permeation of voriconazole from aqueous drops. J Adv Pharm Technol Res 4(4):210–216.  https://doi.org/10.4103/2231-4040.121416 PubMedPubMedCentralGoogle Scholar
  201. 201.
    Stojanovic A, Chen X, Jin N, Zhang T, Stojanovic F, Raeder S, Utheim TP (2012) Safety and efficacy of epithelium-on corneal collagen cross-linking using a multifactorial approach to achieve proper stromal riboflavin saturation. J Ophthalmol 2012:498435.  https://doi.org/10.1155/2012/498435 PubMedPubMedCentralGoogle Scholar
  202. 202.
    Pinelli R, El-Shawaf H (2009) Transepithelial tensioactive mediated CXL. J Cataract Refract Surg 4(37):67–70Google Scholar
  203. 203.
    Kır MB, Türkyılmaz K, Öner V (2017) Transepithelial high-intensity cross-linking for the treatment of progressive keratoconus: 2-year outcomes. Curr Eye Res 42(1):28–31.  https://doi.org/10.3109/02713683.2016.1148742 PubMedGoogle Scholar
  204. 204.
    Lesniak SP, Hersh PS (2014) Transepithelial corneal collagen crosslinking for keratoconus: six-month results. J Cataract Refract Surg 40(12):1971–1979.  https://doi.org/10.1016/j.jcrs.2014.03.026 PubMedGoogle Scholar
  205. 205.
    Prasad R, Koul V (2012) Transdermal delivery of methotrexate: past, present and future prospects. Ther Deliv 3(3):315–325PubMedGoogle Scholar
  206. 206.
    Dubinsky RM, Kabbani H, El-Chami Z, Boutwell C, Ali H (2004) Practice parameter: treatment of postherpetic neuralgia: an evidence-based report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 63(6):959–965.  https://doi.org/10.1212/01.wnl.0000140708.62856.72 PubMedGoogle Scholar
  207. 207.
    Gomez I, Szabo A, Pap L Jr, Pap L, Boda K, Szekanecz Z (2012) In vivo calcium and phosphate iontophoresis for the topical treatment of osteoporosis. Phys Ther 92(2):289–297.  https://doi.org/10.2522/ptj.20100400 PubMedGoogle Scholar
  208. 208.
    Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12(3):348–360.  https://doi.org/10.1208/s12248-010-9183-3 PubMedPubMedCentralGoogle Scholar
  209. 209.
    Frucht-Pery J, Raiskup F, Mechoulam H, Shapiro M, Eljarrat-Binstock E, Domb A (2006) Iontophoretic treatment of experimental Pseudomonas keratitis in rabbit eyes using gentamicin-loaded hydrogels. Cornea 25(10):1182–1186.  https://doi.org/10.1097/01.ico.0000243959.14651.18 PubMedGoogle Scholar
  210. 210.
    Vinciguerra P, Romano V, Rosetta P, Legrottaglie EF, Kubrak-Kisza M, Azzolini C, Vinciguerra R (2016) Iontophoresis-assisted corneal collagen cross-linking with epithelial debridement: preliminary results. Biomed Res Int 2016.  https://doi.org/10.1155/2016/3720517
  211. 211.
    Manetti M, Favuzza E, Sgambati E, Mencucci R, Marini M (2017) A case of in vivo iontophoresis-assisted corneal collagen cross-linking for keratoconus: an immunohistochemical study. Acta Histochem 119(3):343–347.  https://doi.org/10.1016/j.acthis.2017.02.001 PubMedGoogle Scholar
  212. 212.
    Bikbova G, Bikbov M (2016) Standard corneal collagen crosslinking versus transepithelial iontophoresis-assisted corneal crosslinking, 24 months follow-up: randomized control trial. Acta Ophthalmol 94(7):e600–e606.  https://doi.org/10.1111/aos.13032 PubMedPubMedCentralGoogle Scholar
  213. 213.
    Cassagne M, Laurent C, Rodrigues M, Galinier A, Spoerl E, Galiacy SD, Soler V, Fournié P, Malecaze F (2016) Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest Ophthalmol Vis Sci 57(2):594.  https://doi.org/10.1167/iovs.13-12595 PubMedGoogle Scholar
  214. 214.
    Bouheraoua N, Jouve L, El Sanharawi M, Sandali O, Temstet C, Loriaut P, Basli E, Borderie V, Laroche L (2014) Optical coherence tomography and confocal microscopy following three different protocols of corneal collagen-crosslinking in keratoconus. Invest Ophthalmol Vis Sci 55(11):7601–7609.  https://doi.org/10.1167/iovs.14-15662 PubMedGoogle Scholar
  215. 215.
    Vinciguerra R, Spoerl E, Romano MR, Rosetta P, Vinciguerra P (2012) Comparative stress strain measurements of human corneas after transepithelial UV-A induced cross-linking: impregnation with iontophoresis, different riboflavin solutions and irradiance power. Invest Ophthalmol Vis Sci 53(14):1518Google Scholar
  216. 216.
    Lombardo M, Giannini D, Lombardo G, Serrao S (2017) Randomized controlled trial comparing transepithelial corneal cross-linking using iontophoresis with the Dresden protocol in progressive keratoconus. Ophthalmology 124(6):804–812.  https://doi.org/10.1016/j.ophtha.2017.01.040 PubMedGoogle Scholar
  217. 211.
    Vinciguerra P, Romano V, Rosetta P, Legrottaglie EF, Piscopo R, Fabiani C, Azzolini C, Vinciguerra R (2016) Transepithelial iontophoresis versus standard corneal collagen cross-linking: 1-year results of a prospective clinical study. J Refract Surg 32(10):672–678PubMedGoogle Scholar
  218. 218.
    Cantemir A, Alexa AI, Anton N, Ciuntu RE, Danielescu C, Chiselita D, Costin D (2017) Evaluation of iontophoretic collagen cross-linking for early stage of progressive keratoconus compared to standard cross-linking: a non-inferiority study. Ophthalmol Ther 6(1):147–160.  https://doi.org/10.1007/s40123-017-0076-8 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sandeepani K. Subasinghe
    • 1
  • Kelechi C. Ogbuehi
    • 2
  • George J. Dias
    • 1
  1. 1.Department of AnatomyUniversity of OtagoDunedinNew Zealand
  2. 2.Ophthalmology Section, Department of Medicine, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand

Personalised recommendations