Skip to main content

Advertisement

Log in

“Myo-neuropathy” is commonly associated with mitochondrial tRNALysine mutation

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The mitochondrial tRNALys (mt-tRNALys) mutation is initially associated with myoclonic epilepsy and ragged-red fibers (MERRF). The clinical, laboratory, morphologic and molecular findings from 22 mt-tRNALys mutation carriers from local database in East China were analyzed retrospectively. We identified 13 symptomatic and 9 asymptomatic individuals with a known pathogenic mitochondrial tRNALys mutation. The most common mutations were m.8344 A>G (81.8%), m.8363G>A (9.1%), m.8356 T>C (4.5%) and m.8356 T>G (4.5%). The degree of mutation heteroplasmy in blood was high both in symptomatic (mean 64.5%, range 41–82%) and asymptomatic individuals (mean 53.1%, range 21–78%). Age at onset ranged from 6 year-old to the age of 66 years (mean 35.8 ± 16.4 years old). The most frequent symptoms were muscle weakness (76.9%), exercise intolerance (76.9%), elevated creatine kinase levels (61.5%), peripheral neuropathy (69.2%) and cerebellar ataxia (61.5%), while myoclonus was only present in 23.1% of symptomatic patients. A diagnosis of mitochondrial myopathy (MM) and neuropathy ataxia and retinitis pigmentosa (NARP/NARP-like) syndrome was made in 77% of symptomatic patients, whereas the classic syndrome of myoclonic epilepsy with ragged-red fibers (MERRF) was rare (23%). In this cohort of patients with mt-tRNALys mutation, more than one third of our patients did not develop signs and symptoms of central nervous system involvement even in later stages of the disease, indicating the necessity to investigate the mt-tRNALys gene in ‘pure’ mitochondrial ‘myo-neuropathy’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fukuhara N, Tokiguchi S, Shirakawa K, Tsubaki T (1980) Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J Neurol Sci 47(1):117–133. https://doi.org/10.1016/0022-510x(80)90031-3

    Article  CAS  PubMed  Google Scholar 

  2. Blakely EL, Alston CL, Lecky B, Chakrabarti B, Falkous G, Turnbull DM, Taylor RW, Gorman GS (2014) Distal weakness with respiratory insufficiency caused by the m.8344A > G "MERRF" mutation. Neuromuscul Disord 24(6):533–536. https://doi.org/10.1016/j.nmd.2014.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chu CC, Huang CC, Fang W, Chu NS, Pang CY, Wei YH (1997) Peripheral neuropathy in mitochondrial encephalomyopathies. Eur Neurol 37(2):110–115. https://doi.org/10.1159/000117420

    Article  CAS  PubMed  Google Scholar 

  4. Musumeci O, Barca E, Lamperti C, Servidei S, Comi GP, Moggio M, Mongini T, Siciliano G, Filosto M, Pegoraro E, Primiano G, Ronchi D, Vercelli L, Orsucci D, Bello L, Zeviani M, Mancuso M, Toscano A (2019) Lipomatosis incidence and characteristics in an Italian cohort of mitochondrial patients. Front Neurol 10:160. https://doi.org/10.3389/fneur.2019.00160

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hirata K, Nakagawa M, Higuchi I, Hashimoto K, Hanada K, Takahashi K, Niiyama T, Izumi K, Sakoda S, Yamada H, Osame M (1999) Adult onset limb-girdle type mitochondrial myopathy with a mitochondrial DNA np8291 A-to-G substitution. J Hum Genet 44(3):210–214. https://doi.org/10.1007/s100380050145

    Article  CAS  PubMed  Google Scholar 

  6. Old S, Johnson M (1989) Methods of microphotometric assay of succinate dehydrogenase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem J 21(9–10):545–555

    Article  CAS  Google Scholar 

  7. Yan J-b, Zhang R, Xiong C, Hu C, Lv Y, Wang C-r, Jia W-p, Zeng F (2014) Pyrosequencing is an accurate and reliable method for the analysis of heteroplasmy of the A3243G mutation in patients with mitochondrial diabetes. J Mol Diagn 16(4):431–439. https://doi.org/10.1016/j.jmoldx.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  8. Catteruccia M, Sauchelli D, Della Marca G, Primiano G, Cuccagna C, Bernardo D, Leo M, Camporeale A, Sanna T, Cianfoni A, Servidei S (2015) "Myo-cardiomyopathy" is commonly associated with the A8344G "MERRF" mutation. J Neurol 262(3):701–710. https://doi.org/10.1007/s00415-014-7632-0

    Article  CAS  PubMed  Google Scholar 

  9. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, Minetti C, Moggio M, Mongini T, Servidei S, Tonin P, Toscano A, Uziel G, Bruno C, Caldarazzo Ienco E, Filosto M, Lamperti C, Martinelli D, Moroni I, Musumeci O, Pegoraro E, Ronchi D, Santorelli FM, Sauchelli D, Scarpelli M, Sciacco M, Spinazzi M, Valentino ML, Vercelli L, Zeviani M, Siciliano G (8344A) Phenotypic heterogeneity of the 8344A>G mtDNA "MERRF" mutation. Neurology 80(22):2049–2054. https://doi.org/10.1212/WNL.0b013e318294b44c

    Article  CAS  PubMed  Google Scholar 

  10. Altmann J, Buchner B, Nadaj-Pakleza A, Schafer J, Jackson S, Lehmann D, Deschauer M, Kopajtich R, Lautenschlager R, Kuhn KA, Karle K, Schols L, Schulz JB, Weis J, Prokisch H, Kornblum C, Claeys KG, Klopstock T (2016) Expanded phenotypic spectrum of the m8344A>G "MERRF" mutation: data from the German mitoNET registry. J Neurol 263(5):961–972. https://doi.org/10.1007/s00415-016-8086-3

    Article  CAS  PubMed  Google Scholar 

  11. Lu Y, Zhao D, Yao S, Wu S, Hong D, Wang Q, Liu J, Smeitink JA, Yuan Y, Wang Z (2017) Mitochondrial tRNA genes are hotspots for mutations in a cohort of patients with exercise intolerance and mitochondrial myopathy. J Neurol Sci 379:137–143

    Article  CAS  Google Scholar 

  12. Stendel C, Neuhofer C, Floride E, Yuqing S, Ganetzky RD, Park J, Freisinger P, Kornblum C, Kleinle S, Schols L, Distelmaier F, Stettner GM, Buchner B, Falk MJ, Mayr JA, Synofzik M, Abicht A, Haack TB, Prokisch H, Wortmann SB, Murayama K, Fang F, Klopstock T, Group ATPS (2020) Delineating MT-ATP6-associated disease: From isolated neuropathy to early onset neurodegeneration. Neurol Genet 6(1):e393. https://doi.org/10.1212/NXG.0000000000000393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santorelli FM, Tanji K, Shanske S, DiMauro S (1997) Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 49(1):270–273. https://doi.org/10.1212/wnl.49.1.270

    Article  CAS  PubMed  Google Scholar 

  14. DiMauro S, Andreu AL, De Vivo DC (2002) Mitochondrial disorders. J Child Neurol 17(3):35–45 (discussion 33S46-37)

    Google Scholar 

  15. Finsterer J (2020) Phenotype and genotype determine the diagnosis of MERRF or MERRF plus. Eur Ann Otorhinolaryngol Head Neck Dis. https://doi.org/10.1016/j.anorl.2018.12.003

    Article  PubMed  Google Scholar 

  16. Mancuso M, Orsucci D, Angelini C, Bertini E, Catteruccia M, Pegoraro E, Carelli V, Valentino ML, Comi GP, Minetti C, Bruno C, Moggio M, Ienco EC, Mongini T, Vercelli L, Primiano G, Servidei S, Tonin P, Scarpelli M, Toscano A, Musumeci O, Moroni I, Uziel G, Santorelli FM, Nesti C, Filosto M, Lamperti C, Zeviani M, Siciliano G (2014) Myoclonus in mitochondrial disorders. Movement Disord 29(6):722–728. https://doi.org/10.1002/mds.25839

    Article  CAS  PubMed  Google Scholar 

  17. Chinnery PF, Howell N, Lightowlers RN, Turnbull DM (1997) Molecular pathology of MELAS and MERRF The relationship between mutation load and clinical phenotypes. Brain 120(10):1713–1721. https://doi.org/10.1093/brain/120.10.1713

    Article  PubMed  Google Scholar 

  18. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, Suomalainen A, Thorburn DR, Zeviani M, Turnbull DM (2016) Mitochondrial diseases. Nature Rev Dis Primers 2:16080. https://doi.org/10.1038/nrdp.2016.80

    Article  Google Scholar 

  19. Ji K, Zheng J, Sun B, Liu F, Shan J, Li D, Luo YB, Zhao Y, Yan C (2014) Novel mitochondrial C15620A variant may modulate the phenotype of mitochondrial G11778A mutation in a Chinese family with Leigh syndrome. NeuroMol Med 16(1):119–126. https://doi.org/10.1007/s12017-013-8264-8

    Article  CAS  Google Scholar 

  20. Jiang P, Jin X, Peng Y, Wang M, Liu H, Liu X, Zhang Z, Ji Y, Zhang J, Liang M, Zhao F, Sun YH, Zhang M, Zhou X, Chen Y, Mo JQ, Huang T, Qu J, Guan MX (2016) The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet 25(3):584–596. https://doi.org/10.1093/hmg/ddv498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients and families. This study was supported by the National Natural Science Foundation of China (81701237 and 81671235), People’s benefit project of science and technology in Qingdao (16-6-2-1-nsh) and the Taishan Scholars Program of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflicts of interest

The authors have declared that no conflict of interest exists.

Ethical standards

The study was performed according to the Declaration of Helsinki and approved by the ethical committee of the Qilu Hospital of Shandong University.

Informed consent

All the patients gave their informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, K., Zhao, B., Lin, Y. et al. “Myo-neuropathy” is commonly associated with mitochondrial tRNALysine mutation. J Neurol 267, 3319–3328 (2020). https://doi.org/10.1007/s00415-020-10017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-10017-z

Keywords

Navigation