Appropriate assessment method of 123I-MIBG myocardial scintigraphy for the diagnosis of Lewy body diseases and idiopathic REM sleep behavior disorder

Abstract

Background

In 123I-metaiodobenzylguanidine (123I-MIBG) myocardial scintigraphy, the early heart-to-mediastinum (H/M) ratio is considered to reflect the density of the cardiac sympathetic nerve endings, washout rate (WR) is an indicator of the cardiac sympathetic tone, and the delayed H/M ratio reflects both. The Delayed H/M ratio is usually used to support the diagnosis of Lewy body diseases (LBDs) and idiopathic REM sleep behavior disorder (iRBD); however, which values should be used have not been specified. Here, we hypothesized that the combination of these values is appropriate for the diagnostic purpose.

Methods

In this single-center retrospective cohort study, we recruited 106 patients with LBDs or iRBD and 33 patients without those diseases, of whom we reviewed the 123I-MIBG myocardial scintigraphy results.

Results

Sensitivity/specificity to diagnose LBDs and iRBD were 0.77/0.94 for the early H/M ratio (≤ 2.0), 0.82/0.94 for the delayed H/M ratio (≤ 2.0), and 0.89/0.91 for WR (≥ 23.0). When patients were considered positive if at least either the early H/M ratio or WR was abnormal, the sensitivity significantly increased to 0.97, whereas the specificity remained similar at 0.91. Furthermore, our subgroup analyses revealed that WR enhancement preceded H/M ratio reduction, but, in patients with a severely reduced early H/M ratio, paradoxically normal WR could be observed.

Conclusion

We propose the highly sensitive, combined early H/M ratio and WR assessments for 123I-MIBG myocardial scintigraphy. The temporal precedence of cardiac sympathetic dysfunction over denervation and the floor effect in 123I-MIBG uptake may underlie the sensitivity improvement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

Raw data used in this analysis was deposited in OSF (Open Science Framework). View-only link to our data is https://osf.io/6fmhw/?view_only=fadff8b1a6544c398d7ce2e114f0e8a7.

References

  1. 1.

    Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  Google Scholar 

  2. 2.

    Tsukita K, Sakamaki-Tsukita H, Tanaka K et al (2019) Value of in vivo α-synuclein deposits in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 34:1452–1463. https://doi.org/10.1002/mds.27794

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Tsukita K, Taguchi T, Sakamaki-Tsukita H et al (2018) The vagus nerve becomes smaller in patients with Parkinson’s disease: a preliminary cross-sectional study using ultrasonography. Parkinsonism Relat Disord 55:148–149. https://doi.org/10.1016/j.parkreldis.2018.06.002

    Article  PubMed  Google Scholar 

  4. 4.

    Chelban V, Bocchetta M, Hassanein S et al (2019) An update on advances in magnetic resonance imaging of multiple system atrophy. J Neurol 266:1036–1045. https://doi.org/10.1007/s00415-018-9121-3

    Article  PubMed  Google Scholar 

  5. 5.

    Romagnolo A, Fabbri M, Merola A et al (2018) Beyond 35 years of Parkinson’s disease: a comprehensive clinical and instrumental assessment. J Neurol 265:1989–1997. https://doi.org/10.1007/s00415-018-8955-z

    Article  PubMed  Google Scholar 

  6. 6.

    Nicastro N, Wegrzyk J, Preti MG et al (2019) Classification of degenerative parkinsonism subtypes by support-vector-machine analysis and striatal 123I-FP-CIT indices. J Neurol 266:1771–1781. https://doi.org/10.1007/s00415-019-09330-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hakusui S, Yasuda T, Yanagi T et al (1994) A radiological analysis of heart sympathetic functions with meta-[123I]iodobenzylguanidine in neurological patients with autonomic failure. J Auton Nerv Syst 49:81–84. https://doi.org/10.1016/0165-1838(94)90023-x

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Orimo S, Ozawa E, Nakade S et al (1999) (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry 67:189–194. https://doi.org/10.1136/jnnp.67.2.189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Miyamoto T, Miyamoto M, Inoue Y et al (2006) Reduced cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Neurology 67:2236–2238. https://doi.org/10.1212/01.wnl.0000249313.25627.2e

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    King AE, Mintz J, Royall DR (2011) Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov Disord 26:1218–1224. https://doi.org/10.1002/mds.23659

    Article  PubMed  Google Scholar 

  11. 11.

    Orimo S, Suzuki M, Inaba A, Mizusawa H (2012) 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative Parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord 18:494–500. https://doi.org/10.1016/j.parkreldis.2012.01.009

    Article  PubMed  Google Scholar 

  12. 12.

    Treglia G, Cason E, Stefanelli A et al (2012) MIBG scintigraphy in differential diagnosis of Parkinsonism: a meta-analysis. Clin Auton Res 22:43–55. https://doi.org/10.1007/s10286-011-0135-5

    Article  PubMed  Google Scholar 

  13. 13.

    Yoshita M, Arai H, Arai H et al (2015) Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS ONE 10:e0120540. https://doi.org/10.1371/journal.pone.0120540

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Giannoccaro MP, Donadio V, Incensi A et al (2015) Skin biopsy and I-123 MIBG scintigraphy findings in idiopathic Parkinson’s disease and parkinsonism: a comparative study. Mov Disord 30:986–989. https://doi.org/10.1002/mds.26189

    Article  PubMed  Google Scholar 

  15. 15.

    Alves Do Rego C, Namer IJ, Marcel C et al (2018) Prospective study of relevance of 123I-MIBG myocardial scintigraphy and clonidine GH test to distinguish Parkinson’s disease and multiple system atrophy. J Neurol 265:2033–2039. https://doi.org/10.1007/s00415-018-8941-5

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yousaf T, Dervenoulas G, Valkimadi P-E, Politis M (2019) Neuroimaging in Lewy body dementia. J Neurol 266:1–26. https://doi.org/10.1007/s00415-018-8892-x

    Article  PubMed  Google Scholar 

  17. 17.

    McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100. https://doi.org/10.1212/WNL.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Taki J, Yoshita M, Yamada M, Tonami N (2004) Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: it can be a specific marker for Lewy body disease. Ann Nucl Med 18:453–461. https://doi.org/10.1007/bf02984560

    Article  PubMed  Google Scholar 

  19. 19.

    Kashihara K, Ohno M, Kawada S, Okumura Y (2006) Reduced cardiac uptake and enhanced washout of 123I-MIBG in pure autonomic failure occurs conjointly with Parkinson’s disease and dementia with Lewy bodies. J Nucl Med 47:1099–1101

    CAS  PubMed  Google Scholar 

  20. 20.

    van der Veen BJ, Al Younis I, de Roos A, Stokkel MPM (2012) Assessment of global cardiac I-123 MIBG uptake and washout using volumetric quantification of SPECT acquisitions. J Nucl Cardiol 19:752–762. https://doi.org/10.1007/s12350-012-9539-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nakajima K, Nakata T (2015) Cardiac 123I-MIBG imaging for clinical decision making: 22-year experience in Japan. J Nucl Med 56(Suppl 4):11S–19S. https://doi.org/10.2967/jnumed.114.142794

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Orimo S, Yogo M, Nakamura T et al (2016) (123)I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies. Ageing Res Rev 30:122–133. https://doi.org/10.1016/j.arr.2016.01.001

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Lamotte G, Holmes C, Wu T, Goldstein DS (2019) Long-term trends in myocardial sympathetic innervation and function in synucleinopathies. Parkinsonism Relat Disord 67:27–33. https://doi.org/10.1016/j.parkreldis.2019.09.014

    Article  PubMed  Google Scholar 

  24. 24.

    Bohnen NI, Kuwabara H, Constantine GM et al (2007) Grooved pegboard test as a biomarker of nigrostriatal denervation in Parkinson’s disease. Neurosci Lett 424:185–189. https://doi.org/10.1016/j.neulet.2007.07.035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Martin WRW, Wieler M, Stoessl AJ, Schulzer M (2008) Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson’s disease. Ann Neurol 63:388–394. https://doi.org/10.1002/ana.21320

    Article  PubMed  Google Scholar 

  26. 26.

    The consensus committee of the American Autonomic Society and the American Academy of Neurology (1996) Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. Neurology 46:1470. https://doi.org/10.1212/wnl.46.5.1470

    Article  Google Scholar 

  27. 27.

    American Academy of Sleep Medicine (2014) International classification of sleep disorders. American Academy of Sleep Medicine, Darien

    Google Scholar 

  28. 28.

    Iber C, Ancoli-Israel S, Andrew LC, Stuart FQ (2007) The AASM Manual for the scoring of sleep and associated events: rules Terminology and Technical Specifications. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  29. 29.

    Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676. https://doi.org/10.1212/01.wnl.0000324625.00404.15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Höglinger GU, Respondek G, Stamelou M et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32:853–864. https://doi.org/10.1002/mds.26987

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Armstrong MJ, Litvan I, Lang AE et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503. https://doi.org/10.1212/WNL.0b013e31827f0fd1

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Jacobson AF, Travin MI (2015) Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol 22:980–993. https://doi.org/10.1007/s12350-015-0170-z

    Article  PubMed  Google Scholar 

  33. 33.

    Matsuo S, Nakajima K (2015) Assessment of cardiac sympathetic nerve function using 123I-meta-iodobenzylguanidine scintigraphy: technical aspects and standardization. Ann Nucl Cardiol 1:27–34. https://doi.org/10.17996/ANC.01.01.27

    Article  Google Scholar 

  34. 34.

    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    CAS  Article  Google Scholar 

  35. 35.

    Schofer J, Spielmann R, Schuchert A et al (1988) Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 12:1252–1258. https://doi.org/10.1016/0735-1097(88)92608-3

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Henderson EB, Kahn JK, Corbett JR et al (1988) Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 78:1192–1199. https://doi.org/10.1161/01.cir.78.5.1192

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Treglia G, Cason E (2012) Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis between dementia with lewy bodies and other dementias: a systematic review and a meta-analysis. J Neuroimaging 22:111–117. https://doi.org/10.1111/j.1552-6569.2010.00532.x

    Article  PubMed  Google Scholar 

  38. 38.

    Iranzo A, Fernández-Arcos A, Tolosa E et al (2014) Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS ONE 9:e89741. https://doi.org/10.1371/journal.pone.0089741

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Koyama S, Tachibana N, Masaoka Y et al (2007) Decreased myocardial (123)I-MIBG uptake and impaired facial expression recognition in a patient with REM sleep behavior disorder. Mov Disord 22:746–747. https://doi.org/10.1002/mds.21450

    Article  PubMed  Google Scholar 

  40. 40.

    Miyamoto T, Miyamoto M, Suzuki K et al (2008) 123I-MIBG cardiac scintigraphy provides clues to the underlying neurodegenerative disorder in idiopathic REM sleep behavior disorder. Sleep 31:717–723. https://doi.org/10.1093/sleep/31.5.717

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Oguri T, Tachibana N, Mitake S et al (2008) Decrease in myocardial 123I-MIBG radioactivity in REM sleep behavior disorder: two patients with different clinical progression. Sleep Med 9:583–585. https://doi.org/10.1016/j.sleep.2007.08.006

    Article  PubMed  Google Scholar 

  42. 42.

    Kashihara K, Imamura T, Shinya T (2010) Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord 16:252–255. https://doi.org/10.1016/j.parkreldis.2009.12.010

    Article  PubMed  Google Scholar 

  43. 43.

    Miyamoto T, Miyamoto M, Iwanami M, Hirata K (2011) Cardiac 123I-MIBG accumulation in Parkinson’s disease differs in association with REM sleep behavior disorder. Parkinsonism Relat Disord 17:219–220. https://doi.org/10.1016/j.parkreldis.2010.11.020

    Article  PubMed  Google Scholar 

  44. 44.

    Miyamoto T, Miyamoto M, Iwanami M, Hirata K (2011) Follow-up study of cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Eur J Neurol 18:1275–1278. https://doi.org/10.1111/j.1468-1331.2011.03392.x

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Tsujikawa K, Hasegawa Y, Yokoi S et al (2015) Chronological changes of 123I-MIBG myocardial scintigraphy and clinical features of Parkinson’s disease. J Neurol Neurosurg Psychiatry 86:945–951. https://doi.org/10.1136/jnnp-2015-310327

    Article  PubMed  Google Scholar 

  46. 46.

    Nomura T, Inoue Y, Högl B et al (2010) Relationship between (123)I-MIBG scintigrams and REM sleep behavior disorder in Parkinson’s disease. Parkinsonism Relat Disord 16:683–685. https://doi.org/10.1016/j.parkreldis.2010.08.011

    Article  PubMed  Google Scholar 

  47. 47.

    Heinzel S, Berg D, Gasser T et al (2019) Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 34:1464–1470. https://doi.org/10.1002/mds.27802

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Takahiro Kamada for inspiring us to do this study. He died in January 2019, and we wish to dedicate this article to his memory. We also thank Drs. Hiroshi Chatani, Koji Tsuzaki, Naoko Uehara, Yuwa Oka, and Akihiro Kikuya for their support in conducting this study, and Editage (https://www.editage.com) for editing and reviewing this manuscript for English language.

Funding

This study was neither supported nor funded.

Author information

Affiliations

Authors

Contributions

KT, NT, and TH contributed to the study conception, study design, and data acquisition. KT primarily analyzed the data and did the statistical analyses. The first draft of the manuscript was written by KT. NT and TH revised the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kazuto Tsukita.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest concerning this study. Outside this study, Naoko Tachibana received a research grant from Novartis Pharma K.K.

Ethics approval

This study was approved by the institutional review board of Kansai Electric Power Hospital and conducted according to the ethical standards issued by the Declaration of Helsinki.

Consent to participate and consent for publication

The details of this study was posted up in our hospital with our contact information. All patients were exempt by the institutional review board of Kansai Electric Power Hospital from providing written informed consent due to the retrospective design of this study; however, all patients had the chance to request the detailed explanation from us and opt out at any time.

Code availability

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 988 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsukita, K., Tachibana, N. & Hamano, T. Appropriate assessment method of 123I-MIBG myocardial scintigraphy for the diagnosis of Lewy body diseases and idiopathic REM sleep behavior disorder. J Neurol (2020). https://doi.org/10.1007/s00415-020-09992-0

Download citation

Keywords

  • 123I-MIBG myocardial scintigraphy
  • Lewy body diseases
  • Idiopathic REM sleep behavior disorder