Balance and coordination training for patients with genetic degenerative ataxia: a systematic review

Abstract

Background and purpose

The group of genetic degenerative ataxias shares the same feature of gradual deterioration in balance and coordination. However, no cure is yet available for this group of disorders, while rehabilitation remains a cornerstone in the current therapy. This review aims to present a summary of the current knowledge of balance and coordination training in patients with inherited degenerative ataxia and to discuss the training effectiveness accordingly.

Methods

A comprehensive search was performed in 5 electronic databases (i.e., Cochrane Library, PEDro, EMbase, PubMed and MEDLINE) to identify the related publications from January, 1999 to January, 2020. Methodological quality was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) grading system and the PEDro scale.

Results

A total of 33 out of 515 studies met the eligibility criteria, and were categorized and discussed by their training methods including: (1) conventional physical/occupational therapy, (2) virtual reality/videogame-based training, and (3) adapted physical activity. Despite the substantial variation among included studies, most patients achieved significant improvement in the aspect of balance and coordination following individually-tailored rehabilitation programs. The effects of training showed a relative consistency regardless of the functional dependency level on admission.

Conclusions

Balance and coordination training, especially the conventional physical/occupational therapy, is able to improve the balance and coordinative function of patients with genetic degenerative ataxia, but more high-quality studies are needed to formulate recommendations for clinical practice.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Sun YM, Lu C, Wu ZY (2016) Spinocerebellar ataxia: relationship between phenotype and genotype—a review. Clin Genet 90(4):305–314

    CAS  PubMed  Google Scholar 

  2. 2.

    Burk K (2017) Friedreich Ataxia: current status and future prospects. Cerebellum Ataxias 4:4

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM (2016) Ataxia telangiectasia: a review. Orphanet J Rare Dis 11(1):159

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bird TD (1998, updated 2019) Hereditary ataxia overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews((R)). Seattle (WA): University of Washington, Seattle; 1993–2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1138/

  5. 5.

    Levy A, Lang AE (2018) Ataxia-telangiectasia: a review of movement disorders, clinical features, and genotype correlations. Movement Disord 33(8):1238–1247

    PubMed  Google Scholar 

  6. 6.

    Fonteyn EM, Keus SH, Verstappen CC, Schols L, de Groot IJ, van de Warrenburg BP (2014) The effectiveness of allied health care in patients with ataxia: a systematic review. J Neurol 261(2):251–258

    PubMed  Google Scholar 

  7. 7.

    Synofzik M, Ilg W (2014) Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. Biomed Res Int 2014:583507

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Marquer A, Barbieri G, Perennou D (2014) The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review. Ann Phys Rehabil Med 57(2):67–78

    CAS  PubMed  Google Scholar 

  9. 9.

    Nardone A, Turcato AM, Schieppati M (2014) Effects of balance and gait rehabilitation in cerebellar disease of vascular or degenerative origin. Restor Neurol Neurosci 32(2):233–245

    PubMed  Google Scholar 

  10. 10.

    Martakis K, Stark C, Alberg E, Bossier C, Semler O, Schonau E, Duran I (2019) Motor function improvement in children with ataxia receiving interval rehabilitation, including vibration-assisted hometraining: a retrospective study. Klin Padiatr 231(6):304–312

    PubMed  Google Scholar 

  11. 11.

    Milne SC, Corben LA, Georgiou-Karistianis N, Delatycki MB, Yiu EM (2017) Rehabilitation for individuals with genetic degenerative ataxia: a systematic review. Neurorehabil Neural Repair 31(7):609–622

    PubMed  Google Scholar 

  12. 12.

    Harbour R, Miller J (2001) A new system for grading recommendations in evidence based guidelines. BMJ 323(7308):334–336

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83(8):713–721

    PubMed  Google Scholar 

  14. 14.

    Marsden J, Harris C (2011) Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil 25(3):195–216

    PubMed  Google Scholar 

  15. 15.

    Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, Sobue G, Nishizawa M, Cerebellar Ataxia Rehabilitation Trialists C (2012) Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair 26(5):515–522

    PubMed  Google Scholar 

  16. 16.

    Rodriguez-Diaz JC, Velazquez-Perez L, Rodriguez Labrada R, Aguilera Rodriguez R, Laffita Perez D, Canales Ochoa N, Medrano Montero J, Estupinan Rodriguez A, Osorio Borjas M, Gongora Marrero M, Reynaldo Cejas L, Gonzalez Zaldivar Y, Almaguer Gotay D (2018) Neurorehabilitation therapy in spinocerebellar ataxia type 2: a 24-week, rater-blinded, randomized, controlled trial. Movement Disord 33(9):1481–1487

    PubMed  Google Scholar 

  17. 17.

    Bunn LM, Marsden JF, Giunti P, Day BL (2015) Training balance with opto-kinetic stimuli in the home: a randomized controlled feasibility study in people with pure cerebellar disease. Clin Rehabil 29(2):143–153

    PubMed  Google Scholar 

  18. 18.

    Chang YJ, Chou CC, Huang WT, Lu CS, Wong AM, Hsu MJ (2015) Cycling regimen induces spinal circuitry plasticity and improves leg muscle coordination in individuals with spinocerebellar ataxia. Arch Phys Med Rehabil 96(6):1006–1013

    PubMed  Google Scholar 

  19. 19.

    Seco CJ, Fernandez IG, Verdejol IC, Perez VR, Atutxa AF, Torres-Unda J (2014) Improvements in quality of life in individuals with Friedreich’s ataxia after participation in a 5-year program of physical activity: an observational study pre-post test design, and two years follow-up. Int J Neurorehabil 1(3):129

    Google Scholar 

  20. 20.

    Milne SC, Corben LA, Roberts M, Murphy A, Tai G, Georgiou-Karistianis N, Yiu EM, Delatycki MB (2018) Can rehabilitation improve the health and well-being in Friedreich's ataxia: a randomized controlled trial? Clin Rehabil 32(5):630–643

    PubMed  Google Scholar 

  21. 21.

    Barbuto S, Martelli D, Omofuma IB, Lee N, Kuo SH, Agrawal S, Lee S, O'Dell M, Stein J (2020) Phase I randomized single-blinded controlled study investigating the potential benefit of aerobic exercise in degenerative cerebellar disease. Clin Rehabil 34(5):584–594

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Ilg W, Synofzik M, Brotz D, Burkard S, Giese MA, Schols L (2009) Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73(22):1823–1830

    CAS  PubMed  Google Scholar 

  23. 23.

    Ilg W, Brotz D, Burkard S, Giese MA, Schols L, Synofzik M (2010) Long-term effects of coordinative training in degenerative cerebellar disease. Movement Disord 25(13):2239–2246

    PubMed  Google Scholar 

  24. 24.

    Keller JL, Bastian AJ (2014) A home balance exercise program improves walking in people with cerebellar ataxia. Neurorehabil Neural Repair 28(8):770–778

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Tabbassum K, Zia N, Singh S, Suman K (2013) Core stability training with conventional balance training improves dynamic balance in progressive degenerative cerebellar ataxia. Indian J Physiother Occup Ther 7:136–140

    Google Scholar 

  26. 26.

    Fonteyn EM, Heeren A, Engels JJ, Boer JJ, van de Warrenburg BP, Weerdesteyn V (2014) Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. Gait Post 40(1):247–251

    Google Scholar 

  27. 27.

    Im SJ, Kim YH, Kim KH, Han JW, Yoon SJ, Park JH (2017) The effect of a task-specific locomotor training strategy on gait stability in patients with cerebellar disease: a feasibility study. Disabil Rehabil 39(10):1002–1008

    PubMed  Google Scholar 

  28. 28.

    Burciu RG, Fritsche N, Granert O, Schmitz L, Sponemann N, Konczak J, Theysohn N, Gerwig M, van Eimeren T, Timmann D (2013) Brain changes associated with postural training in patients with cerebellar degeneration: a voxel-based morphometry study. J Neurosci 33(10):4594–4604

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Cakrt O, Vyhnalek M, Slaby K, Funda T, Vuillerme N, Kolar P, Jerabek J (2012) Balance rehabilitation therapy by tongue electrotactile biofeedback in patients with degenerative cerebellar disease. Neuro Rehabil 31(4):429–434

    Google Scholar 

  30. 30.

    Jorge-Rodríguez JL, Fernández-Martínez E, Pérez DR, Peralta-Flores A, Bergado JA (2013) Motor improvement in cerebellar ataxia after integral rehabilitation. J Neurorestoratol 1:31–36

    Google Scholar 

  31. 31.

    Milne SC, Campagna EJ, Corben LA, Delatycki MB, Teo K, Churchyard AJ, Haines TP (2012) Retrospective study of the effects of inpatient rehabilitation on improving and maintaining functional independence in people with Friedreich ataxia. Arch Phys Med Rehabil 93(10):1860–1863

    PubMed  Google Scholar 

  32. 32.

    Sawant P, Gokhale P (2015) Functional approach in spinocerebellar ataxia- occupational therapy perspective. Indian J Physiother Occup Ther 9:222–227

    Google Scholar 

  33. 33.

    Sahay P, Roy D, Das S, Mondal M, Sarkar B (2017) Effects of intensive coordination training while walking in parallel bars with visual feedback in a case of spinocerebellar ataxia type I: a case report. Int J Health Sci Res 7(8):507–515

    Google Scholar 

  34. 34.

    Schroeder T (2013) Rehabilitation of a US Army soldier diagnosed with cerebellar atrophy with an ataxic gait. Mil Med 178(7):e879–e883

    PubMed  Google Scholar 

  35. 35.

    Leonardi L, Aceto MG, Marcotulli C, Arcuria G, Serrao M, Pierelli F, Paone P, Filla A, Roca A, Casali C (2017) A wearable proprioceptive stabilizer for rehabilitation of limb and gait ataxia in hereditary cerebellar ataxias: a pilot open-labeled study. Neurol Sci 38(3):459–463

    PubMed  Google Scholar 

  36. 36.

    Bastani A, Cofre Lizama LE, Zoghi M, Blashki G, Davis S, Kaye AH, Khan F, Galea MP (2018) The combined effect of cranial-nerve non-invasive neuromodulation with high-intensity physiotherapy on gait and balance in a patient with cerebellar degeneration: a case report. Cerebellum Ataxias 5:6

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Vanbellingen T, Filius SJ, Nyffeler T, van Wegen EEH (2017) Usability of videogame-based dexterity training in the early rehabilitation phase of stroke patients: a pilot study. Front Neurol 8:654

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Rose FD, Brooks BM, Rizzo AA (2005) Virtual reality in brain damage rehabilitation: review. Cyberpsychol Behav 8(3):241–262 (discussion 263–271)

    PubMed  Google Scholar 

  39. 39.

    Levac D, Glegg S, Colquhoun H, Miller P, Noubary F (2017) Virtual reality and active videogame-based practice, learning needs, and preferences: a cross-Canada survey of physical therapists and occupational therapists. Games Health J 6(4):217–228

    PubMed  Google Scholar 

  40. 40.

    Bove RM, Rush G, Zhao C, Rowles W, Garcha P, Morrissey J, Schembri A, Alailima T, Langdon D, Possin K, Gazzaley A, Feinstein A, Anguera J (2019) A videogame-based digital therapeutic to improve processing speed in people with multiple sclerosis: a feasibility study. Neurol Ther 8(1):135–145

    PubMed  Google Scholar 

  41. 41.

    Dowling GA, Hone R, Brown C, Mastick J, Melnick M (2013) Feasibility of adapting a classroom balance training program to a video game platform for people with Parkinson's disease. Telemed J E Health 19(4):298–304

    PubMed  Google Scholar 

  42. 42.

    Wang RY, Huang FY, Soong BW, Huang SF, Yang YR (2018) A randomized controlled pilot trial of game-based training in individuals with spinocerebellar ataxia type 3. Sci Rep 8(1):7816

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ilg W, Schatton C, Schicks J, Giese MA, Schols L, Synofzik M (2012) Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology 79(20):2056–2060

    PubMed  Google Scholar 

  44. 44.

    Santos G, Zeigelboim DBS, Severiano M, Teive H, Liberalesso P, Marques J, Cordeiro M (2017) Feasibility of virtual reality-based balance rehabilitation in adults with spinocerebellar ataxia: a prospective observational study. Hear Balance Commun. https://doi.org/10.1080/21695717.21692017.21381490

    Article  Google Scholar 

  45. 45.

    Schatton C, Synofzik M, Fleszar Z, Giese MA, Schols L, Ilg W (2017) Individualized exergame training improves postural control in advanced degenerative spinocerebellar ataxia: a rater-blinded, intra-individually controlled trial. Parkinsonism Related Disord 39:80–84

    Google Scholar 

  46. 46.

    Synofzik M, Schatton C, Giese M, Wolf J, Schols L, Ilg W (2013) Videogame-based coordinative training can improve advanced, multisystemic early-onset ataxia. J Neurol 260(10):2656–2658

    PubMed  Google Scholar 

  47. 47.

    Zeigelboim BS, Souza SD, Mengelberg H, Teive HFG, Liberalesso PBN (2013) Vestibular rehabilitation with virtual reality in spinocerebellar ataxia. Audiol Commun Res 18(2):143–147

    Google Scholar 

  48. 48.

    Toktaş H, Yaman F, Ulaşlı AM, Dündar Ü (2015) Virtual reality rehabilitation in a case with spinocerebellar ataxia. Turk J Phys Med Rehab 61:383–386

    Google Scholar 

  49. 49.

    Kalyani HHN, Sullivan K, Moyle G, Brauer S, Jeffrey ER, Roeder L, Berndt S, Kerr G (2019) Effects of dance on gait, cognition, and dual-tasking in Parkinson's disease: a systematic review and meta-analysis. J Parkinsons Dis 9(2):335–349

    CAS  PubMed  Google Scholar 

  50. 50.

    Dos Santos DM, Komeroski IG, Monteiro EP, Costa RR, Haas AN (2018) Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson's disease: a systematic review with meta-analysis. Aging Clin Exp Res 30(7):727–735

    Google Scholar 

  51. 51.

    Hackney ME, Earhart GM (2010) Effects of dance on gait and balance in Parkinson's disease: a comparison of partnered and nonpartnered dance movement. Neurorehabil Neural Repair 24(4):384–392

    PubMed  Google Scholar 

  52. 52.

    Mandelbaum R, Triche EW, Fasoli SE, Lo AC (2016) A Pilot Study: examining the effects and tolerability of structured dance intervention for individuals with multiple sclerosis. Disabil Rehabil 38(3):218–222

    PubMed  Google Scholar 

  53. 53.

    Song YG, Ryu YU, Im SJ, Lee YS, Park JH (2019) Effects of dance-based movement therapy on balance, gait, and psychological functions in severe cerebellar ataxia: a case study. Physiother Theory Pract 35(8):756–763

    PubMed  Google Scholar 

  54. 54.

    Ni X, Liu S, Lu F, Shi X, Guo X (2014) Efficacy and safety of Tai Chi for Parkinson's disease: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 9(6):e99377

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Winser SJ, Kannan P, Pang M, Smith C, Tsang WW (2018) Potential benefits and safety of T'ai Chi for balance and functional independence in people with cerebellar ataxia. J Altern Complement Med. https://doi.org/10.1089/acm.2017.0396

    Article  PubMed  Google Scholar 

  56. 56.

    Bonnechere B, Jansen B, Omelina L, Van Sint JS (2016) The use of commercial video games in rehabilitation: a systematic review. Int J Rehabil Res 39(4):277–290

    PubMed  Google Scholar 

  57. 57.

    Rose T, Nam CS, Chen KB (2018) Immersion of virtual reality for rehabilitation—review. Appl Ergon 69:153–161

    PubMed  Google Scholar 

  58. 58.

    Lanza G, Casabona JA, Bellomo M, Cantone M, Fisicaro F, Bella R, Pennisi G, Bramanti P, Pennisi M, Bramanti A (2019) Update on intensive motor training in spinocerebellar ataxia: time to move a step forward? J Int Med Res:300060519854626

Download references

Funding

This work was supported by grants from Youth Program of National Natural Science Foundation of China (81901306, MH), Huxiang High-Level Talent Gathering Project of Hunan Province (2019RS1011, MH), the National Natural Science Foundation of China (No. 81672225, SSG).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shu-guang Gao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard statement

The manuscript does not contain clinical studies or patient data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, M., Zhang, H., Tang, Z. et al. Balance and coordination training for patients with genetic degenerative ataxia: a systematic review. J Neurol (2020). https://doi.org/10.1007/s00415-020-09938-6

Download citation

Keywords

  • Genetic
  • Degenerative ataxia
  • Balance
  • Coordination
  • Rehabilitation