Advertisement

Journal of Neurology

, Volume 265, Issue 6, pp 1410–1418 | Cite as

Similarities and differences between infantile and early childhood onset vanishing white matter disease

  • Ling Zhou
  • Haihua Zhang
  • Na Chen
  • Zhongbin Zhang
  • Ming Liu
  • Lifang Dai
  • Jingmin Wang
  • Yuwu Jiang
  • Ye Wu
Original Communication
  • 100 Downloads

Abstract

Vanishing white matter disease (VWM) is one of the most prevalent inherited leukoencephalopathies in childhood. Infantile VWM is more severe but less understood than the classic early childhood type. We performed a follow-up study on 14 infantile and 26 childhood patients to delineate the natural history and neuroimaging features of VWM. Infantile and childhood patients shared similarities in the incidence of epileptic seizure (35.7 vs. 38.5%) and episodic aggravation (92.9 vs. 84.6%). Developmental delay before disease onset was more common in infantile patients. Motor disability was earlier and more severe in infantile VWM. In survivors with disease durations of 1–3 years, the Gross Motor Function Classification System (GMFCS) was classified as IV–V in 66.7% of infantile and only 29.4% of childhood patients. Kaplan–Meier survival curve analysis indicated that the 5-year survival rates were 21.6 and 91.3% in infantile and childhood VWM, respectively. In terms of MRI, infantile patients showed more extensive involvement and earlier rarefaction, with more common involvement of subcortical white matter, internal capsule, brain stem and dentate nuclei of the cerebellum. Restricted diffusion was more diffuse or extensive in infantile patients. In addition, four novel mutations were identified. In conclusion, we identified some similarities and differences in the natural history and neuroimaging features between infantile and early childhood VWM.

Keywords

Vanishing white matter disease (VWM) Early childhood Infantile Natural history MRI 

Notes

Acknowledgements

This study was supported by Beijing key laboratory (BZ0317), the National Key Research and Development Program of China (Nos. 2016YFC0901505, 2016YFC1306201), and the Public Foundation of Beijing Center of Neural Regeneration and Repair.

Compliance with ethical standards

Conflicts of interest

The authors declare no financial or other conflicts of interest.

Ethical standards

This study was approved by the clinical research ethics committee of Peking University First Hospital, and informed consent forms were signed by the parents.

References

  1. 1.
    van der Knaap MS, Pronk JC, Scheper GC (2006) Vanishing white matter disease. Lancet Neurol 5(5):413–423.  https://doi.org/10.1016/S1474-4422(06)70440-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Bugiani M et al (2010) Leukoencephalopathy with vanishing white matter: a review. J Neuropathol Exp Neurol 69(10):987–996.  https://doi.org/10.1097/NEN.0b013e3181f2eafa CrossRefPubMedGoogle Scholar
  3. 3.
    Leegwater PA et al (2001) Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat Genet 29(4):383–388.  https://doi.org/10.1038/ng764 CrossRefPubMedGoogle Scholar
  4. 4.
    van der Knaap MS et al (2002) Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol 51(2):264–270CrossRefPubMedGoogle Scholar
  5. 5.
    Scheper GC, Proud CG, van der Knaap MS (2006) Defective translation initiation causes vanishing of cerebral white matter. Trends Mol Med 12(4):159–166.  https://doi.org/10.1016/j.molmed.2006.02.006 CrossRefPubMedGoogle Scholar
  6. 6.
    Pan YX et al (2009) Eukaryotic translation initiation factor 2B and leukoencephalopathy with vanishing white matter. Beijing Da Xue Xue Bao 41(5):608–610PubMedGoogle Scholar
  7. 7.
    van der Knaap MS et al (1998) Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology 51(2):540–547CrossRefPubMedGoogle Scholar
  8. 8.
    Fogli A et al (2002) A severe variant of childhood ataxia with central hypomyelination/vanishing white matter leukoencephalopathy related to EIF21B5 mutation. Neurology 59(12):1966–1968CrossRefPubMedGoogle Scholar
  9. 9.
    Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424.  https://doi.org/10.1038/gim.2015.30 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shevell MI et al (2009) Comorbidities in cerebral palsy and their relationship to neurologic subtype and GMFCS level. Neurology 72(24):2090–2096.  https://doi.org/10.1212/WNL.0b013e3181aa537b CrossRefPubMedGoogle Scholar
  11. 11.
    Malt MA et al (2016) Correlation between the Gait Deviation Index and gross motor function (GMFCS level) in children with cerebral palsy. J Child Orthop 10(3):261–266.  https://doi.org/10.1007/s11832-016-0738-4 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gunel MK et al (2009) Relationship among the Manual Ability Classification System (MACS), the Gross Motor Function Classification System (GMFCS), and the functional status (WeeFIM) in children with spastic cerebral palsy. Eur J Pediatr 168(4):477–485.  https://doi.org/10.1007/s00431-008-0775-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Loes DJ et al (2003) Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology 61(3):369–374CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang H et al (2015) Fifteen novel EIF2B1-5 mutations identified in Chinese children with leukoencephalopathy with vanishing white matter and a long term follow-up. PLoS One 10(3):e0118001.  https://doi.org/10.1371/journal.pone.0118001 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jansen AC et al (2008) Leucoencephalopathy with vanishing white matter may cause progressive myoclonus epilepsy. Epilepsia 49(5):910–913.  https://doi.org/10.1111/j.1528-1167.2008.01542.x CrossRefPubMedGoogle Scholar
  16. 16.
    Sharma S et al (2011) Vanishing white matter disease associated with ptosis and myoclonic seizures. J Child Neurol 26(3):366–368.  https://doi.org/10.1177/0883073810381529 CrossRefPubMedGoogle Scholar
  17. 17.
    Vermeulen G et al (2005) Fright is a provoking factor in vanishing white matter disease. Ann Neurol 57(4):560–563.  https://doi.org/10.1002/ana.20418 CrossRefPubMedGoogle Scholar
  18. 18.
    Prange H, Weber T (2011) Vanishing white matter disease: a stress-related leukodystrophy. Nervenarzt 82(10):1330–1334.  https://doi.org/10.1007/s00115-011-3284-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Kaczorowska M et al (2006) Acute fright induces onset of symptoms in vanishing white matter disease-case report. Eur J Paediatr Neurol 10(4):192–193.  https://doi.org/10.1016/j.ejpn.2006.05.008 CrossRefPubMedGoogle Scholar
  20. 20.
    Fogli A et al (2004) The effect of genotype on the natural history of eIF2B-related leukodystrophies. Neurology 62(9):1509–1517CrossRefPubMedGoogle Scholar
  21. 21.
    Alorainy IA et al (1999) Cree leukoencephalopathy: neuroimaging findings. Radiology 213(2):400–406.  https://doi.org/10.1148/radiology.213.2.r99oc28400 CrossRefPubMedGoogle Scholar
  22. 22.
    Fogli A et al (2002) Cree leukoencephalopathy and CACH/VWM disease are allelic at the EIF2B5 locus. Ann Neurol 52(4):506–510.  https://doi.org/10.1002/ana.10339 CrossRefPubMedGoogle Scholar
  23. 23.
    Labauge P et al (2007) CACH/VWM syndrome and leucodystrophies related to EIF2B mutations. Rev Neurol (Paris) 163(8–9):793–799CrossRefGoogle Scholar
  24. 24.
    van der Lei HD et al (2012) Characteristics of early MRI in children and adolescents with vanishing white matter. Neuropediatrics 43(1):22–26.  https://doi.org/10.1055/s-0032-1307456 CrossRefPubMedGoogle Scholar
  25. 25.
    Bugiani M et al (2011) Defective glial maturation in vanishing white matter disease. J Neuropathol Exp Neurol 70(1):69–82.  https://doi.org/10.1097/NEN.0b013e318203ae74 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wong K et al (2000) Foamy cells with oligodendroglial phenotype in childhood ataxia with diffuse central nervous system hypomyelination syndrome. Acta Neuropathol 100(6):635–646CrossRefPubMedGoogle Scholar
  27. 27.
    Van Haren K et al (2004) The life and death of oligodendrocytes in vanishing white matter disease. J Neuropathol Exp Neurol 63(6):618–630CrossRefPubMedGoogle Scholar
  28. 28.
    Huber T et al (2017) Automated segmentation reveals silent radiographic progression in adult-onset vanishing white-matter disease. Neuroradiol J 30(1):5–9.  https://doi.org/10.1177/1971400916678222 CrossRefPubMedGoogle Scholar
  29. 29.
    Lutsep HL et al (1997) Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 41(5):574–580.  https://doi.org/10.1002/ana.410410505 CrossRefPubMedGoogle Scholar
  30. 30.
    Schaefer PW (2001) Applications of DWI in clinical neurology. J Neurol Sci 186(Suppl 1):S25–S35CrossRefPubMedGoogle Scholar
  31. 31.
    Romano A et al (2003) Diffusion-weighted MR imaging: clinical applications in neuroradiology. Radiol Med 106(5–6):521–548PubMedGoogle Scholar
  32. 32.
    Karaarslan E, Arslan A (2008) Diffusion weighted MR imaging in non-infarct lesions of the brain. Eur J Radiol 65(3):402–416.  https://doi.org/10.1016/j.ejrad.2007.04.023 CrossRefPubMedGoogle Scholar
  33. 33.
    Bhatt A et al (2009) Diffusion-weighted imaging: not all that glitters is gold. South Med J 102(9):923–928.  https://doi.org/10.1097/SMJ.0b013e3181a9142a CrossRefPubMedGoogle Scholar
  34. 34.
    Le Bihan D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407.  https://doi.org/10.1148/radiology.161.2.3763909 CrossRefPubMedGoogle Scholar
  35. 35.
    Patay Z (2005) Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol 15(11):2284–2303.  https://doi.org/10.1007/s00330-005-2846-2 CrossRefPubMedGoogle Scholar
  36. 36.
    Hanefeld F et al (1993) Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics 24(5):244–248.  https://doi.org/10.1055/s-2008-1071551 CrossRefPubMedGoogle Scholar
  37. 37.
    Sijens PE et al (2005) 1H chemical shift imaging, MRI, and diffusion-weighted imaging in vanishing white matter disease. Eur Radiol 15(11):2377–2379.  https://doi.org/10.1007/s00330-005-2783-0 CrossRefPubMedGoogle Scholar
  38. 38.
    van der Lei HD et al (2012) Restricted diffusion in vanishing white matter. Arch Neurol 69(6):723–727.  https://doi.org/10.1001/archneurol.2011.1658 PubMedCrossRefGoogle Scholar
  39. 39.
    Ding XQ et al (2012) Imaging evidence of early brain tissue degeneration in patients with vanishing white matter disease: a multimodal MR study. J Magn Reson Imaging 35(4):926–932.  https://doi.org/10.1002/jmri.23517 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ling Zhou
    • 1
  • Haihua Zhang
    • 1
  • Na Chen
    • 1
  • Zhongbin Zhang
    • 1
  • Ming Liu
    • 1
  • Lifang Dai
    • 1
  • Jingmin Wang
    • 1
  • Yuwu Jiang
    • 1
  • Ye Wu
    • 1
  1. 1.Department of PediatricsPeking University First HospitalBeijingChina

Personalised recommendations