Skip to main content
Log in

Alterations in white matter network topology contribute to freezing of gait in Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Freezing of gait (FOG) is a common symptom in advanced Parkinson’s disease (PD). Despite current advances, the neural mechanisms underpinning this disturbance remain poorly understood. To this end, we investigated the structural organisation of the white matter connectome in PD freezers and PD non-freezers. We hypothesized that freezers would show an altered network architecture, which could hinder the effective information processing that characterizes the disorder. Twenty-six freezers and twenty-four well-matched non-freezers were included in this study. Using diffusion tensor imaging, we investigated the modularity and integration of the regional connectome by calculating the module degree z score and the participation coefficient, respectively. Compared to non-freezers, freezers demonstrated lower participation coefficients in the right caudate, thalamus, and hippocampus, as well as within superior frontal and parietal cortical regions. Importantly, several of these nodes were found within the brain’s ‘rich club’. Furthermore, group differences in module degree z scores within cortical frontal and sensory processing areas were found. Together, our results suggest that changes in the structural network topology contribute to the manifestation of FOG in PD, specifically due to a lack of structural integration between key information processing hubs of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10(8):734–744. https://doi.org/10.1016/S1474-4422(11)70143-0

    Article  PubMed  Google Scholar 

  2. Walton CC, Shine JM, Hall JM, O’Callaghan C, Mowszowski L, Gilat M, Szeto JY, Naismith SL, Lewis SJ (2015) The major impact of freezing of gait on quality of life in Parkinson’s disease. J Neurol 262(1):108–115. https://doi.org/10.1007/s00415-014-7524-3

    Article  PubMed  CAS  Google Scholar 

  3. Plotnik M, Giladi N, Hausdorff JM (2012) Is freezing of gait in Parkinson’s disease a result of multiple gait impairments? Implications for treatment. Parkinson’s Dis 2012:8. https://doi.org/10.1155/2012/459321

    Article  Google Scholar 

  4. Naismith SL, Shine JM, Lewis SJG (2010) The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov Disord 25(8):1000–1004. https://doi.org/10.1002/mds.23005

    Article  PubMed  Google Scholar 

  5. Ehgoetz Martens KA, Ellard CG, Almeida QJ (2014) A closer look at mechanisms underlying perceptual differences in Parkinson’s freezers and non-freezers. Neuroscience 274:162–169. https://doi.org/10.1016/j.neuroscience.2014.05.022

    Article  PubMed  CAS  Google Scholar 

  6. Ehgoetz Martens KA, Ellard CG, Almeida QJ (2014) Does anxiety cause freezing of gait in Parkinson’s disease? PLoS One 9(9):e106561. https://doi.org/10.1371/journal.pone.0106561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lewis SJ, Shine JM (2016) The next step: a common neural mechanism for freezing of gait. Neuroscientist 22(1):72–82. https://doi.org/10.1177/1073858414559101

    Article  PubMed  Google Scholar 

  8. Schweder PM, Hansen PC, Green AL, Quaghebeur G, Stein J, Aziz TZ (2010) Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait. NeuroReport 21(14):914–916. https://doi.org/10.1097/WNR.0b013e32833ce5f1

    Article  PubMed  Google Scholar 

  9. Fling BW, Cohen RG, Mancini M, Nutt JG, Fair DA, Horak FB (2013) Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 136(Pt 8):2405–2418. https://doi.org/10.1093/brain/awt172

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vercruysse S, Leunissen I, Vervoort G, Vandenberghe W, Swinnen S, Nieuwboer A (2015) Microstructural changes in white matter associated with freezing of gait in Parkinson’s disease. Mov Disord 30(4):567–576. https://doi.org/10.1002/mds.26130

    Article  PubMed  Google Scholar 

  11. Youn J, Lee JM, Kwon H, Kim JS, Son TO, Cho JW (2015) Alterations of mean diffusivity of pedunculopontine nucleus pathway in Parkinson’s disease patients with freezing of gait. Parkinsonism Rel Disord 21(1):12–17. https://doi.org/10.1016/j.parkreldis.2014.10.003

    Article  Google Scholar 

  12. Pietracupa S, Suppa A, Upadhyay N, Giannì C, Grillea G, Leodori G, Modugno N, Di Biasio F, Zampogna A, Colonnese C, Berardelli A, Pantano P (2018) Freezing of gait in Parkinson’s disease: gray and white matter abnormalities. J Neurol 265(1):52–62. https://doi.org/10.1007/s00415-017-8654-1

    Article  PubMed  Google Scholar 

  13. Fling BW, Cohen RG, Mancini M, Carpenter SD, Fair DA, Nutt JG, Horak FB (2014) functional reorganization of the locomotor network in Parkinson patients with freezing of gait. PLoS One 9(6):e100291. https://doi.org/10.1371/journal.pone.0100291 (ARTN)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Canu E, Agosta F, Sarasso E, Volonte MA, Basaia S, Stojkovic T, Stefanova E, Comi G, Falini A, Kostic VS, Gatti R, Filippi M (2015) Brain structural and functional connectivity in Parkinson’s disease with freezing of gait. Hum Brain Mapp 36(12):5064–5078. https://doi.org/10.1002/hbm.22994

    Article  PubMed  Google Scholar 

  15. Shine JM, Poldrack RA (2017) Principles of dynamic network reconfiguration across diverse brain states. NeuroImage. https://doi.org/10.1016/j.neuroimage.2017.08.010

    Article  PubMed  Google Scholar 

  16. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640. https://doi.org/10.1146/annurev-psych-122414-033634

    Article  PubMed  Google Scholar 

  17. Bassett DS, Yang M, Wymbs NF, Grafton ST (2015) Learning-induced autonomy of sensorimotor systems. Nat Neurosci 18(5):744–751. https://doi.org/10.1038/nn.3993

    Article  PubMed  CAS  Google Scholar 

  18. Bertolero MA, Yeo BTT, D’Esposito M (2015) The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci 112(49):E6798–E6807. https://doi.org/10.1073/pnas.1510619112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425. https://doi.org/10.1016/j.tics.2004.07.008

    Article  PubMed  Google Scholar 

  20. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society URTF (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  21. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442

    Article  PubMed  CAS  Google Scholar 

  22. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  23. Wechsler DS (1997) Wechsler memory scale. The Psychological Corporation, San Antonio

    Google Scholar 

  24. Army Battery IT (1944) Manual of directions and scoring. War Department, Adjutant General’s Office, Washington, DC

    Google Scholar 

  25. Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD (2000) Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Rel Disord 6(3):165–170

    Article  CAS  Google Scholar 

  26. Shine JM, Moore ST, Bolitho SJ, Morris TR, Dilda V, Naismith SL, Lewis SJG (2012) Assessing the utility of freezing of Gait Questionnaires in Parkinson’s disease. Parkinsonism Rel Disord 18(1):25–29. https://doi.org/10.1016/j.parkreldis.2011.08.002

    Article  CAS  Google Scholar 

  27. Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KQ, Maeder P, Meuli R, Hagmann P (2012) Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci Methods 203(2):386–397. https://doi.org/10.1016/j.jneumeth.2011.09.031

    Article  PubMed  Google Scholar 

  28. Daducci A, Gerhard S, Griffa A, Lemkaddem A, Cammoun L, Gigandet X, Meuli R, Hagmann P, Thiran J-P (2012) The connectome mapper: an open-source processing pipeline to map connectomes with MRI. PLoS One 7(12):e48121. https://doi.org/10.1371/journal.pone.0048121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  PubMed  CAS  Google Scholar 

  30. Zalesky A, Fornito A, Cocchi L, Gollo LL, van den Heuvel MP, Breakspear M (2016) Connectome sensitivity or specificity: which is more important? NeuroImage 142:407–420. https://doi.org/10.1016/j.neuroimage.2016.06.035

    Article  PubMed  Google Scholar 

  31. de Reus MA, van den Heuvel MP (2013) Estimating false positives and negatives in brain networks. NeuroImage 70:402–409. https://doi.org/10.1016/j.neuroimage.2012.12.066

    Article  PubMed  Google Scholar 

  32. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  33. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786. https://doi.org/10.1523/jneurosci.3539-11.2011

    Article  PubMed  Google Scholar 

  34. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25. https://doi.org/10.1002/hbm.1058

    Article  PubMed  Google Scholar 

  35. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349. https://doi.org/10.1038/nrn3214

    Article  PubMed  CAS  Google Scholar 

  36. Robbins TW, Arnsten AFT (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Ann Rev Neurosci 32:267–287. https://doi.org/10.1146/annurev.neuro.051508.135535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137(Pt 8):2382–2395. https://doi.org/10.1093/brain/awu132

    Article  PubMed  PubMed Central  Google Scholar 

  38. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72. https://doi.org/10.1523/JNEUROSCI.3874-05.2006

    Article  PubMed  CAS  Google Scholar 

  39. Guimera R, Amaral LA (2005) Cartography of complex networks: modules and universal roles. J Stat Mech 2005(P02001):nihpa35573. https://doi.org/10.1088/1742-5468/2005/02/p02001

    Article  PubMed  Google Scholar 

  40. Bertolero MA, Yeo BTT, D’Esposito M (2017) The diverse club. Nat Commun 8(1):1277. https://doi.org/10.1038/s41467-017-01189-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Herman T, Rosenberg-Katz K, Jacob Y, Giladi N, Hausdorff JM (2014) Gray matter atrophy and freezing of gait in Parkinson’s disease: is the evidence black-on-white? Mov Disord 29(1):134–139. https://doi.org/10.1002/mds.25697

    Article  PubMed  Google Scholar 

  42. Shine JM, Matar E, Ward PB, Bolitho SJ, Gilat M, Pearson M, Naismith SL, Lewis SJG (2013) Exploring the cortical and subcortical fMRI changes associated with freezing in Parkinson’s disease. Brain 136(4):1204–1215

    Article  PubMed  Google Scholar 

  43. Sherman SM (2016) Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci 16(4):533–541. https://doi.org/10.1038/nn.4269

    Article  CAS  Google Scholar 

  44. Jarbo K, Verstynen TD (2015) Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. J Neurosci 35(9):3865–3878. https://doi.org/10.1523/jneurosci.2636-14.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hall JM, Shine JM, O’Callaghan C, Walton CC, Gilat M, Naismith SL, Lewis SJG (2015) Freezing of gait and its associations in the early and advanced clinical motor stages of Parkinson’s disease: a cross-sectional study. J Parkinson Dis 5(4):881–891. https://doi.org/10.3233/Jpd-150581

    Article  Google Scholar 

  46. Vandenbossche J, Deroost N, Soetens E, Zeischka P, Spildooren J, Vercruysse S, Nieuwboer A, Kerckhofs E (2012) Conflict and freezing of gait in Parkinson’s disease: support for a response control deficit. Neuroscience 206:144–154. https://doi.org/10.1016/j.neuroscience.2011.12.048

    Article  PubMed  CAS  Google Scholar 

  47. Walton CC, O’Callaghan C, Hall JM, Gilat M, Mowszowski L, Naismith SL, Burrell JR, Shine JM, Lewis SJG (2015) Antisaccade errors reveal cognitive control deficits in Parkinson’s disease with freezing of gait. J Neurol 262(12):2745–2754. https://doi.org/10.1007/s00415-015-7910-5

    Article  PubMed  CAS  Google Scholar 

  48. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11(11):760–772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128(Pt 10):2250–2259. https://doi.org/10.1093/brain/awh569

    Article  PubMed  Google Scholar 

  50. Shine JM, Matar E, Ward PB, Frank MJ, Moustafa AA, Pearson M, Naismith SL, Lewis SJ (2013) Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136(Pt 12):3671–3681. https://doi.org/10.1093/brain/awt272

    Article  PubMed  Google Scholar 

  51. Tessitore A, Amboni M, Esposito F, Russo A, Picillo M, Marcuccio L, Pellecchia MT, Vitale C, Cirillo M, Tedeschi G, Barone P (2012) Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait. Parkinsonism and Rel Disord 18(6):781–787. https://doi.org/10.1016/j.parkreldis.2012.03.018

    Article  Google Scholar 

  52. Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411. https://doi.org/10.1126/science.1238411

    Article  PubMed  CAS  Google Scholar 

  53. Vandenbossche J, Deroost N, Soetens E, Coomans D, Spildooren J, Vercruysse S, Nieuwboer A, Kerckhofs E (2012) Freezing of gait in Parkinson’s disease: disturbances in automaticity and control. Front Hum Neurosci 6:356. https://doi.org/10.3389/fnhum.2012.00356

    Article  PubMed  Google Scholar 

  54. Ehgoetz Martens KA, Pieruccini-Faria F, Almeida QJ (2013) Could sensory mechanisms be a core factor that underlies freezing of gait in Parkinson’s disease? PLoS One 8(5):e62602. https://doi.org/10.1371/journal.pone.0062602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Davidsdottir S, Cronin-Golomb A, Lee A (2005) Visual and spatial symptoms in Parkinson’s disease. Vision Res 45(10):1285–1296. https://doi.org/10.1016/j.visres.2004.11.006

    Article  PubMed  Google Scholar 

  56. Nieuwboer A, De Weerdt W, Dom R, Lesaffre E (1998) A frequency and correlation analysis of motor deficits in Parkinson patients. Disabil Rehabil 20(4):142–150

    Article  PubMed  CAS  Google Scholar 

  57. de Oliveira RV, Pereira JS (2017) The role of diffusion magnetic resonance imaging in Parkinson’s disease and in the differential diagnosis with atypical parkinsonism. Radiol Bras 50(4):250–257. https://doi.org/10.1590/0100-3984.2016-0073

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hall JM, Ehgoetz Martens KA, Walton CC, O’Callaghan C, Keller PE, Lewis SJ, Moustafa AA (2016) Diffusion alterations associated with Parkinson’s disease symptomatology: a review of the literature. Parkinsonism Rel Disord 33:12–26. https://doi.org/10.1016/j.parkreldis.2016.09.026

    Article  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families who contribute to our research at the Parkinson’s Disease Research Clinic. This research was supported by Sydney Informatics Hub, funded by the University of Sydney. JMH is supported by a Western Sydney University Postgraduate Research Award; JMS is supported by a National Health and Medical Research Council CJ Martin Fellowship (1072403); KAEM is supported by a Parkinson Canada Fellowship; MG is supported by a University of Sydney International Scholarship; SJGL is supported by National Health and Medical Research Council-Australian Research Council Dementia Fellowship (#1110414) and this work was supported by funding to Forefront, a collaborative research group dedicated to the study of non-Alzheimer disease degenerative dementias, from the National Health and Medical Research Council of Australia program grant (#1037746 and #1095127). KMB, JYYS, CCW, and AAM have no funding source to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. G. Lewis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All persons gave their informed consent prior to their inclusion in registries. The registries were approved by the Human Research Ethics Committee of the University of Sydney. Patients were included after informed written consent had been obtained, as set forth by the Declaration of Helsinki (WMA, 1964–2014).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Supplementary material 2 (PNG 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, J.M., Shine, J.M., Ehgoetz Martens, K.A. et al. Alterations in white matter network topology contribute to freezing of gait in Parkinson’s disease. J Neurol 265, 1353–1364 (2018). https://doi.org/10.1007/s00415-018-8846-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8846-3

Keywords

Navigation