Treatment of multiple sclerosis relapses with high-dose methylprednisolone reduces the evolution of contrast-enhancing lesions into persistent black holes

  • Maria Di Gregorio
  • Lorenzo Gaetani
  • Paolo Eusebi
  • Piero Floridi
  • Antonella Picchioni
  • Giovanni Rosi
  • Andrea Mancini
  • Chiara Floridi
  • Francesca Baschieri
  • Lucia Gentili
  • Paola Sarchielli
  • Paolo Calabresi
  • Massimiliano Di Filippo
Original Communication

Abstract

Introduction

The MRI evidence of persistent black holes (pBHs) on T1-weighted images reflects brain tissue loss in multiple sclerosis (MS). The evolution of contrast-enhancing lesions (CELs) into pBHs probably depends on the degree and persistence of focal brain inflammation. The aim of our retrospective study was to evaluate the effect of a single cycle of intravenous methylprednisolone (IVMP), as for MS relapse treatment, on the risk of CELs’ evolution into pBHs.

Patients and methods

We selected 57 patients with CELs on the baseline MRI scan. We evaluated the evolution of CELs into pBHs on a follow-up MRI scan performed after ≥ 6 months in patients exposed and not exposed to IVMP for the treatment of relapse after the baseline MRI.

Results

In our cohort, 182 CELs were identified in the baseline MRI and 57 of them (31.3%) evolved into pBHs. In the multivariate analysis, the exposure of CELs to IVMP resulted to be a significant independent protective factor against pBHs’ formation (OR 0.28, 95% CI 0.11–0.766, p = 0.005), while ring enhancement pattern and the fact of being symptomatic were significant risk factors for CELs’ conversion into pBHs (OR 6.42, 95% CI 2.55–17.27, p < 0.001 and OR 13.19, 95% CI 1.56–288.87, p = 0.037).

Conclusions

The exposure of CELs to a cycle of IVMP as for relapse treatment is associated with a lower risk of CELs’ evolution into pBHs. Future studies are required to confirm the potential independent protective effect of IVMP on CELs’ evolution into pBHs.

Keywords

Multiple sclerosis Black holes Methylprednisolone Steroid 

Notes

Author contributions

MDG, LGa, PC, and MDF conceived the study. MDG, LG, AM, FB, LGe, PS, PC, and MDF took clinical care of the patients. MDG, AP, GR, CF, and PF collected and interpreted the MRI data of the patients. LGa and MDG selected the patients for the study and collected their clinical data. PE performed statistical analysis. MDG, LGa, and MDF prepared the manuscript draft. PF prepared Fig. 2. All the authors participated to and revised the final version of the manuscript.

Compliance with ethical standards

Conflicts of interest

MDG received travel grants from Biogen-Idec, Biogen, Novartis, Teva, Genzyme, and Almirall to attend national and international conferences. LGa received travel grants from Biogen-Idec, Biogen, Novartis, Teva, Genzyme, and Almirall to attend national and international conferences. AM received travel grants from Teva and Sanofi Genzyme to attend national conferences. PC received/receive research support from Bayer Schering, Biogen-Dompé, Boehringer Ingelheim, Eisai, Lundbeck, Merck-Serono, Novartis, Sanofi-Aventis, Sigma-Tau, and UCB Pharma. MDF participated to advisory boards and received speaker/writing honoraria and funding for traveling from: Bayer, Biogen-Idec, Genzyme, Merck, Novartis, Roche, and Teva. PE, PF, AP, GR, CF, FB, LGe, and PS report no conflicts of interests. The study is not industry-sponsored.

Ethical standard statement

 The authors declared that they have complied with ethical standards. The study was approved by the local Ethics Committee.

References

  1. 1.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–17CrossRefPubMedGoogle Scholar
  2. 2.
    Bakshi R, Thompson AJ, Rocca MA et al. (2008) MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 7(7):615–25CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Polman CH, Reingold SC, Banwell B et al. (2011) Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol 69(2):292–302CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Neema M, Stankiewicz J, Arora A et al. (2007) MRI in multiple sclerosis: what’s inside the toolbox? Neurotherapeutics 4:602–617CrossRefPubMedGoogle Scholar
  5. 5.
    Sormani MP, Bruzzi P (2013) MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol 12(7):669–76CrossRefPubMedGoogle Scholar
  6. 6.
    Oreja-Guevara C (2015) Overview of magnetic resonance imaging for management of relapsing-remitting multiple sclerosis in everyday practice. Eur J Neurol 22(Suppl 2):22–7CrossRefPubMedGoogle Scholar
  7. 7.
    Sahraian MA, Radue EW, Haller S, Kappos L (2010) Black holes in multiple sclerosis: definition, evolution, and clinical correlations. Acta Neurol Scand 122(1):1–8CrossRefPubMedGoogle Scholar
  8. 8.
    van Walderveen MA, Barkhof F, Hommes OR et al. (1995) Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology 45:1684–1690CrossRefPubMedGoogle Scholar
  9. 9.
    Truyen L, van Waesberghe JHTM, van Walderveen MAA et al. (1996) Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47:1469–1476CrossRefPubMedGoogle Scholar
  10. 10.
    Barkhof F, McGowan JC, van Waesberghe JH, Grossman RI (1998) Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J Neurol Neurosurg Psychiatry 64(Suppl 1):S77–S79PubMedGoogle Scholar
  11. 11.
    Arnold DL, Matthews PM (2002) MRI in the diagnosis and management of multiple sclerosis. Neurology 58(8 Suppl 4):S23–31CrossRefPubMedGoogle Scholar
  12. 12.
    Bagnato F, Jeffries N, Richert ND et al. (2003) Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 126(Pt 8):1782–1789CrossRefPubMedGoogle Scholar
  13. 13.
    Bakshi R, Hutton GJ, Miller JR, Radue E-W (2004) The use of magnetic resonance imaging in the diagnosis and long-term management of multiple sclerosis. Neurology 63(11 Suppl 5):S3–11CrossRefPubMedGoogle Scholar
  14. 14.
    Campbell Z, Sahm D, Donohue BK et al. (2012) Characterizing contrast-enhancing and re-enhancing lesions in multiple sclerosis. Neurology 78(19):1493–1499CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Van Waesberghe JHTM, Van Walderveen MAA, Castelijns JA et al. (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. Am J Neuroradiol 19(4):675–683PubMedGoogle Scholar
  16. 16.
    Van Den Elskamp I, Lembcke J, Dattola V et al. (2008) Persistent T1 hypointensity as an MRI marker for treatment efficacy in multiple sclerosis. Mult Scler 14(6):764–769CrossRefPubMedGoogle Scholar
  17. 17.
    Wayne Moore GR, Laule C (2012) Neuropathologic correlates of magnetic resonance imaging in multiple sclerosis. J Neuropathol Exp Neurol 71(9):762–778CrossRefGoogle Scholar
  18. 18.
    Bakshi R, Neema M, Healy BC et al. (2008) Predicting clinical progression in multiple sclerosis with the magnetic resonance disease severity scale. Arch Neurol 65(11):1449–1453CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zivadinov R, Rudick R, De Masi R et al (2001) Effects of IV methylprednisolone on brain atrophy in relapsing–remitting MS. Neurology 57:1239–1247CrossRefPubMedGoogle Scholar
  20. 20.
    Leary SM, Porter B, Thompson AJ (2005) Multiple sclerosis: diagnosis and the management of acute relapses. Postgrad Med J 81:302–308CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sloka J, Stefanelli M (2005) The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult Scler 11(4):425–432CrossRefPubMedGoogle Scholar
  22. 22.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452CrossRefPubMedGoogle Scholar
  23. 23.
    Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558CrossRefPubMedGoogle Scholar
  24. 24.
    Nagtegaal GJ, Pohl C, Wattjes MP et al. (2014) Interferon beta-1b reduces black holes in a randomised trial of clinically isolated syndrome. Mult Scler 20(2):234–242CrossRefPubMedGoogle Scholar
  25. 25.
    Zivadinov R, Dwyer MG, Ramasamy DP et al (2015) The effect of three times a week glatiramer acetate on cerebral T1 hypointense lesions in relapsing-remitting multiple sclerosis. J Neuroimaging 25:989–995CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mallik S, Samson RS, Wheeler-Kingshott CAM, Miller DH (2014) Imaging outcomes for trials of remyelination in multiple sclerosis. J Neurol Neurosurg Psychiatry 85(12):1396–1404CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wattjes MP, Rovira À, Miller D, et al. (2015) Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol 11(10):597–606PubMedGoogle Scholar
  28. 28.
    Papadopoulou A, Menegola M, Kuhle J, et al. (2014) Lesion-to-ventricle distance and other risk factors for the persistence of newly formed black holes in relapsing-remitting multiple sclerosis. Mult Scler 20:322–330CrossRefPubMedGoogle Scholar
  29. 29.
    Davis M, Auh S, Riva M et al. (2010) Ring and nodular multiple sclerosis lesions: A retrospective natural history study. Neurology 74(10):851–856CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gass A, Filippi M, Rodegher ME et al. (1998) Characteristics of chronic MS lesions in the cerebrum, brainstem, spinal cord, and optic nerve on T1-weighted MRI. Neurology 50(2):548–550CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Di Gregorio
    • 1
  • Lorenzo Gaetani
    • 1
  • Paolo Eusebi
    • 1
  • Piero Floridi
    • 2
  • Antonella Picchioni
    • 1
  • Giovanni Rosi
    • 3
  • Andrea Mancini
    • 1
  • Chiara Floridi
    • 4
  • Francesca Baschieri
    • 1
  • Lucia Gentili
    • 1
  • Paola Sarchielli
    • 1
  • Paolo Calabresi
    • 1
    • 5
  • Massimiliano Di Filippo
    • 1
  1. 1.Clinica Neurologica, Dipartimento di MedicinaUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.S.C. Neuroradiologia, Azienda Ospedaliera di PerugiaPerugiaItaly
  3. 3.Sezione di Diagnostica per Immagini, Dipartimento di Scienze Chirurgiche e BiomedicheUniversità degli Studi di PerugiaPerugiaItaly
  4. 4.Dipartimento di RadiologiaOspedale Fatebenefratelli e OftalmicoMilanItaly
  5. 5.IRCCS Fondazione Santa LuciaRomeItaly

Personalised recommendations