Advertisement

Journal of Neurology

, Volume 264, Issue 4, pp 781–791 | Cite as

Identifying ischemic stroke associated with cancer: a multiple model derived from a case–control analysis

  • Rebecca Kassubek
  • Lars Bullinger
  • Jan Kassubek
  • Jens Dreyhaupt
  • Albert C. Ludolph
  • Katharina Althaus
  • Jan Lewerenz
Original Communication

Abstract

Ischemic stroke in patients with cancer is thought to be associated with a worse prognosis and might be the initial symptom of an unknown malignancy. However, diagnostic algorithms to reliably identify cancer-associated stroke have not been developed. In this retrospective single-centre analysis, 68 patients with ischemic stroke and an active solid malignancy were identified. Neurological assessment and outcome, cardiovascular risk factors, neuroimaging studies as well as laboratory findings were compared to 68 age- and sex-matched control subjects with ischemic stroke without diagnosis of cancer. Lung, pancreatic and renal cancer showed increased prevalences compared to those of the general population in Germany. Diagnosis of cancer was most often made within the 12 months preceding (32.4%) or during the diagnostic work-up for stroke (17.7%). Cancer-associated stroke was characterized by a more severe clinical deficit, frequent clinical deterioration (13.2 vs. 1.5%) or death (25 vs. 4.4%). Ischemic lesions often involved multiple territories (51.6 vs. 12.7%), more often with co-existing subacute and acute infarctions in imaging studies (54.8 vs. 11.1%). Patients with cancer had significantly higher levels of C-reactive protein, relative granulocytosis and serum lactate dehydrogenase activity. Using receiver operating characteristics-based multiple analysis, we developed a model using these parameters which detected cancer-associated stroke with a sensitivity of 75% and specificity of 95%. Our analysis suggests that a multiple algorithm combining the number of territories involved and laboratory signs of inflammation and cell turnover might identify patients with stroke suffering from previously unknown malignancy.

Keywords

Ischemic stroke Cancer Magnetic resonance imaging C-reactive protein Granulocytes Lactate dehydrogenase 

Notes

Acknowledgements

None.

Compliance with ethical standards

Conflicts of interest

None.

Ethical standards

This retrospective study has been approved by the local Ethics Committee (University of Ulm, Germany) and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Supplementary material

415_2017_8432_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. 1.
    GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171. doi: 10.1016/S0140-6736(14)61682-2 CrossRefGoogle Scholar
  2. 2.
    Bouillard JBB (1823) De l’Obliteration des veines et de son influence sur la formation des hydropisies partielles: consideration sur la hydropisies passive et general. Arch Gen Med 1:188–204Google Scholar
  3. 3.
    Graus F, Rogers LR, Posner JB (1985) Cerebrovascular complications in patients with cancer. Medicine (Baltimore) 64(1):16–35CrossRefGoogle Scholar
  4. 4.
    Haddad TC, Greeno EW (2006) Chemotherapy-induced thrombosis. Thromb Res 118(5):555–568. doi: 10.1016/j.thromres.2005.10.015 CrossRefPubMedGoogle Scholar
  5. 5.
    Bang OY, Seok JM, Kim SG, Hong JM, Kim HY, Lee J, Chung PW, Park KY, Kim GM, Chung CS, Lee KH (2011) Ischemic stroke and cancer: stroke severely impacts cancer patients, while cancer increases the number of strokes. J Clin Neurol 7(2):53–59. doi: 10.3988/jcn.2011.7.2.53 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kim SG, Hong JM, Kim HY, Lee J, Chung PW, Park KY, Kim GM, Lee KH, Chung CS, Bang OY (2010) Ischemic stroke in cancer patients with and without conventional mechanisms: a multicenter study in Korea. Stroke 41(4):798–801. doi: 10.1161/STROKEAHA.109.571356 CrossRefPubMedGoogle Scholar
  7. 7.
    Lee EJ, Nah HW, Kwon JY, Kang DW, Kwon SU, Kim JS (2014) Ischemic stroke in patients with cancer: is it different from usual strokes? Int J Stroke 9(4):406–412. doi: 10.1111/ijs.12124 CrossRefPubMedGoogle Scholar
  8. 8.
    Gon Y, Okazaki S, Terasaki Y, Sasaki T, Yoshimine T, Sakaguchi M, Mochizuki H (2016) Characteristics of cryptogenic stroke in cancer patients. Ann Clin Transl Neurol 3(4):280–287. doi: 10.1002/acn3.291 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schwarzbach CJ, Schaefer A, Ebert A, Held V, Bolognese M, Kablau M, Hennerici MG, Fatar M (2012) Stroke and cancer: the importance of cancer-associated hypercoagulation as a possible stroke etiology. Stroke 43(11):3029–3034. doi: 10.1161/STROKEAHA.112.658625 CrossRefPubMedGoogle Scholar
  10. 10.
    Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S et al (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 97:119–123PubMedGoogle Scholar
  11. 11.
    Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P, European Task Force on Age-Related White Matter C (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32(6):1318–1322CrossRefPubMedGoogle Scholar
  12. 12.
    Kang DW, Chalela JA, Ezzeddine MA, Warach S (2003) Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. Arch Neurol 60(12):1730–1734. doi: 10.1001/archneur.60.12.1730 CrossRefPubMedGoogle Scholar
  13. 13.
    Mun JK, Park SJ, Kim SJ, Bang OY, Chung CS, Lee KH, Kim GM (2016) Characteristic lesion pattern and echocardiographic findings in extra-cardiac shunt-related stroke. J Neurol Sci 369:176–180. doi: 10.1016/j.jns.2016.08.024 CrossRefPubMedGoogle Scholar
  14. 14.
    Toiyama Y, Inoue Y, Saigusa S, Kawamura M, Kawamoto A, Okugawa Y, Hiro J, Tanaka K, Mohri Y, Kusunoki M (2013) C-reactive protein as predictor of recurrence in patients with rectal cancer undergoing chemoradiotherapy followed by surgery. Anticancer Res 33(11):5065–5074PubMedGoogle Scholar
  15. 15.
    Jafri SH, Shi R, Mills G (2013) Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): a retrospective review. BMC Cancer 13:158. doi: 10.1186/1471-2407-13-158 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang Y, Jiang C, Li J, Sun J, Qu X (2015) Prognostic significance of preoperative neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in patients with gallbladder carcinoma. Clin Transl Oncol 17(10):810–818. doi: 10.1007/s12094-015-1310-2 CrossRefPubMedGoogle Scholar
  17. 17.
    Gallo M, Sapio L, Spina A, Naviglio D, Calogero A, Naviglio S (2015) Lactic dehydrogenase and cancer: an overview. Front Biosci (Landmark Ed) 20:1234–1249CrossRefGoogle Scholar
  18. 18.
    Khorana AA (2009) Cancer and thrombosis: implications of published guidelines for clinical practice. Ann Oncol 20(10):1619–1630. doi: 10.1093/annonc/mdp068 CrossRefPubMedGoogle Scholar
  19. 19.
    Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC (2013) Epidemiology of cancer-associated venous thrombosis. Blood 122(10):1712–1723. doi: 10.1182/blood-2013-04-460121 CrossRefPubMedGoogle Scholar
  20. 20.
    Prandoni P, Falanga A, Piccioli A (2007) Cancer, thrombosis and heparin-induced thrombocytopenia. Thromb Res 120(Suppl 2):S137–S140. doi: 10.1016/S0049-3848(07)70143-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Cestari DM, Weine DM, Panageas KS, Segal AZ, DeAngelis LM (2004) Stroke in patients with cancer: incidence and etiology. Neurology 62(11):2025–2030CrossRefPubMedGoogle Scholar
  22. 22.
    Grecu N, Tiu C, Terecoasa E, Bajenaru O (2014) Endocarditis and stroke. Maedica (Buchar) 9(4):375–381Google Scholar
  23. 23.
    Abdelgawad EA, Higazi MM, Abdelbaky AO, Abdelghany HS (2016) Diagnostic performance of CT cerebral blood volume colour maps for evaluation of acute infarcts; comparison with diffusion-weighted MRI within 12 h of major stroke onset. J Neuroradiol. doi: 10.1016/j.neurad.2016.10.005 PubMedGoogle Scholar
  24. 24.
    Schaefer PW, Souza L, Kamalian S, Hirsch JA, Yoo AJ, Kamalian S, Gonzalez RG, Lev MH (2015) Limited reliability of computed tomographic perfusion acute infarct volume measurements compared with diffusion-weighted imaging in anterior circulation stroke. Stroke 46(2):419–424. doi: 10.1161/STROKEAHA.114.007117 CrossRefPubMedGoogle Scholar
  25. 25.
    el-Shami K, Griffiths E, Streiff M, (2007) Nonbacterial thrombotic endocarditis in cancer patients: pathogenesis, diagnosis, and treatment. Oncologist 12(5):518–523. doi: 10.1634/theoncologist.12-5-518 CrossRefPubMedGoogle Scholar
  26. 26.
    Wun T, White RH (2009) Venous thromboembolism (VTE) in patients with cancer: epidemiology and risk factors. Cancer Invest 27(Suppl 1):63–74. doi: 10.1080/07357900802656681 CrossRefPubMedGoogle Scholar
  27. 27.
    Horowitz N, Brenner B (2008) Thrombophilia and cancer. Pathophysiol Haemost Thromb 36(3–4):131–136. doi: 10.1159/000175151 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of UlmUlmGermany
  2. 2.Department of Internal Medicine IIIUniversity of UlmUlmGermany
  3. 3.Institute of Epidemiology and Medical BiometryUniversity of UlmUlmGermany

Personalised recommendations