Advertisement

Journal of Neurology

, Volume 264, Issue 4, pp 733–739 | Cite as

The yield of initial conventional MRI in 115 cases of angiographically confirmed spinal vascular malformations

  • Amgad El Mekabaty
  • Carlos A. Pardo
  • Philippe Gailloud
Original Communication

Abstract

MRI is the primary screening tool for patients with myelopathy. The decision to obtain additional imaging, notably spinal angiography, is generally based on initial MRI findings. This study retrospectively analyzed the yield of initial MRI in a cohort of patients with angiographically confirmed vascular malformations. MRI obtained at symptom onset was available in 115 patients with either high-flow (29 cases) or low-flow (86 cases) vascular malformations. MRI was classified as “positive” when the report mentioned a vascular malformation or “negative” when considered normal or when another diagnosis was suggested. Initial MRI was positive in 61 patients (53.0%), correctly identifying 28 high-flow (96.6%) but only 33 low-flow (38.4%) lesions. Flow voids were noted in 96.6% of the high-flow lesions and 38.4% of the low-flow ones. T2-signal anomalies (77.4%) and parenchymal enhancement (54.5%) were also common in low-flow anomalies. Patients with negative MRI had an average delay of 111 days before angiography and 239 days before therapy; these intervals were 27 and 76 days for those with positive MRIs. In summary, MRI shows a high yield for high-flow vascular malformations, i.e., characterized by prominent flow voids on T2-weighted images, but misdiagnosed over 60% of low-flow lesions. The percentage of correctly identified anomalies matched the percentage of observed flow voids in both groups, indicating over-reliance on this sign for the diagnosis of slow-flow lesions. MRI findings in slow-flow vascular malformation overlap with other conditions, notably transverse myelitis, which was initially misattributed to 40% of the slow-flow lesions in our cohort.

Keywords

Spinal vascular disorders Vascular malformations Myelopathy Diagnostic imaging Diagnostic errors 

Notes

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Rangel-Castilla L, Russin JJ, Zaidi HA, Martinez-Del-Campo E, Park MS, Albuquerque FC, McDougall CG, Nakaji P, Spetzler RF (2014) Contemporary management of spinal AVFs and AVMs: lessons learned from 110 cases. Neurosurg Focus 37(3):E14. doi: 10.3171/2014.7.FOCUS14236 CrossRefPubMedGoogle Scholar
  2. 2.
    Flores BC, Klinger DR, White JA, Batjer HH (2016) Spinal vascular malformations: treatment strategies and outcome. Neurosurg Rev. doi: 10.1007/s10143-016-0713-z PubMedGoogle Scholar
  3. 3.
    Gilbertson JR, Miller GM, Goldman MS, Marsh WR (1995) Spinal dural arteriovenous fistulas: MR and myelographic findings. AJNR Am J Neuroradiol 16(10):2049–2057PubMedGoogle Scholar
  4. 4.
    Özkan N, Kreitschmann-Andermahr I, Goerike SL, Wrede KH, Kleist B, Stein KP, Gembruch O, Sandalcioglu IE, Wanke I, Sure U (2015) Single center experience with treatment of spinal dural arteriovenous fistulas. Neurosurg Rev 38(4):683–692. doi: 10.1007/s10143-015-0645-z CrossRefPubMedGoogle Scholar
  5. 5.
    Lanzino G, D’Urso PI, Kallmes DF, Cloft HJ (2012) Onyx embolization of extradural spinal arteriovenous malformations with intradural venous drainage. Neurosurgery 70(2):329–333. doi: 10.1227/NEU.0b013e318230929e CrossRefPubMedGoogle Scholar
  6. 6.
    Merland JJ, Riche MC, Chiras J (1980) Intraspinal extramedullary arteriovenous fistulae draining into the medullary veins. J Neuroradiol 7(4):271–320PubMedGoogle Scholar
  7. 7.
    Thiex R, Mulliken JB, Revencu N, Boon LM, Burrows PE, Cordisco M, Dwight Y, Smith ER, Vikkula M, Orbach DB (2010) A novel association between RASA1 mutations and spinal arteriovenous anomalies. AJNR Am J Neuroradiol 31(4):775–779. doi: 10.3174/ajnr.A1907 CrossRefPubMedGoogle Scholar
  8. 8.
    Saraf-Lavi E, Bowen BC, Quencer RM, Sklar EM, Holz A, Falcone S, Latchaw RE, Duncan R, Wakhloo A (2002) Detection of spinal dural arteriovenous fistulae with MR imaging and contrast-enhanced MR angiography: sensitivity, specificity, and prediction of vertebral level. AJNR Am J Neuroradiol 23(5):858–867PubMedGoogle Scholar
  9. 9.
    Koch C (2006) Spinal dural arteriovenous fistula. Curr Opin Neurol 19(1):69–75CrossRefPubMedGoogle Scholar
  10. 10.
    Saladino A, Atkinson JL, Rabinstein AA, Piepgras DG, Marsh WR, Krauss WE, Kaufmann TJ, Lanzino G (2010) Surgical treatment of spinal dural arteriovenous fistulae: a consecutive series of 154 patients. Neurosurgery 67(5):1350–1357. doi: 10.1227/NEU.0b013e3181ef2821 (discussion 1357–1358) CrossRefPubMedGoogle Scholar
  11. 11.
    Eckart Sorte D, Obrzut M, Wyse E, Gailloud P (2016) Normal venous phase documented during angiography in patients with spinal vascular malformations: incidence and clinical implications. AJNR Am J Neuroradiol 37(3):565–571. doi: 10.3174/ajnr.A4601 CrossRefPubMedGoogle Scholar
  12. 12.
    Mirbagheri S, Eckart Sorte D, Zamora CA, Mossa-Basha M, Newsome SD, Izbudak I (2016) Evaluation and management of longitudinally extensive transverse myelitis: a guide for radiologists. Clin Radiol 71(10):960–971. doi: 10.1016/j.crad.2016.05.020 CrossRefPubMedGoogle Scholar
  13. 13.
    Choi KH, Lee KS, Chung SO, Park JM, Kim YJ, Kim HS, Shinn KS (1996) Idiopathic transverse myelitis: MR characteristics. AJNR Am J Neuroradiol 17(6):1151–1160PubMedGoogle Scholar
  14. 14.
    Kumral E, Polat F, Güllüoglu H, Uzunköprü C, Tuncel R, Alpaydin S (2011) Spinal ischaemic stroke: clinical and radiological findings and short-term outcome. Eur J Neurol 18(2):232–239. doi: 10.1111/j.1468-1331.2010.02994.x CrossRefPubMedGoogle Scholar
  15. 15.
    Cosnard G (2012) Tips and traps in spinal cord pathology. Diagn Interv Imaging 93(12):975–984. doi: 10.1016/j.diii.2012.08.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Jellema K, Canta LR, Tijssen CC, van Rooij WJ, Koudstaal PJ, van Gijn J (2003) Spinal dural arteriovenous fistulas: clinical features in 80 patients. J Neurol Neurosurg Psychiatry 74(10):1438–1440CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rosenblum B, Oldfield EH, Doppman JL, Di Chiro G (1987) Spinal arteriovenous malformations: a comparison of dural arteriovenous fistulas and intradural AVM’s in 81 patients. J Neurosurg 67(6):795–802. doi: 10.3171/jns.1987.67.6.0795 CrossRefPubMedGoogle Scholar
  18. 18.
    Symon L, Kuyama H, Kendall B (1984) Dural arteriovenous malformations of the spine. Clinical features and surgical results in 55 cases. J Neurosurg 60(2):238–247. doi: 10.3171/jns.1984.60.2.0238 CrossRefPubMedGoogle Scholar
  19. 19.
    Transverse Myelitis Consortium Working G (2002) Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 59(4):499–505CrossRefGoogle Scholar
  20. 20.
    Harzheim M, Schlegel U, Urbach H, Klockgether T, Schmidt S (2004) Discriminatory features of acute transverse myelitis: a retrospective analysis of 45 patients. J Neurol Sci 217(2):217–223CrossRefPubMedGoogle Scholar
  21. 21.
    Amarouche M, Hart JL, Siddiqui A, Hampton T, Walsh DC (2015) Time-resolved contrast-enhanced MR angiography of spinal vascular malformations. AJNR Am J Neuroradiol 36(2):417–422. doi: 10.3174/ajnr.A4164 CrossRefPubMedGoogle Scholar
  22. 22.
    Unsrisong K, Taphey S, Oranratanachai K (2016) Spinal arteriovenous shunts: accuracy of shunt detection, localization, and subtype discrimination using spinal magnetic resonance angiography and manual contrast injection using a syringe. J Neurosurg Spine 24(4):664–670. doi: 10.3171/2015.7.SPINE15319 CrossRefPubMedGoogle Scholar
  23. 23.
    Lindenholz A, TerBrugge KG, van Dijk JM, Farb RI (2014) The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience. Eur Radiol 24(11):2885–2894. doi: 10.1007/s00330-014-3307-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen J, Gailloud P (2011) Safety of spinal angiography: Complication rate analysis in 302 diagnostic angiograms. Neurology 77(13):1235–1240. doi: 10.1212/WNL.0b013e3182302068 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Division of Interventional NeuroradiologyThe Johns Hopkins HospitalBaltimoreUSA
  2. 2.Department of Neurology, Division of Neuroimmunology and Neuroinfectious Disorders and Johns Hopkins Transverse Myelitis CenterThe Johns Hopkins HospitalBaltimoreUSA

Personalised recommendations