Advertisement

Journal of Neurology

, Volume 264, Issue 4, pp 654–663 | Cite as

The sensorimotor network dysfunction in migraineurs without aura: a resting-state fMRI study

  • Jilei Zhang
  • Jingjing Su
  • Mengxing Wang
  • Ying Zhao
  • Qi-Ting Zhang
  • Qian Yao
  • Haifeng Lu
  • Hui Zhang
  • Ge-Fei Li
  • Yi-Lan Wu
  • Yi-Sheng Liu
  • Feng-Di Liu
  • Mei-Ting Zhuang
  • Yan-Hui Shi
  • Tian-Yu Hou
  • Rong Zhao
  • Yuan Qiao
  • Jianqi Li
  • Jian-Ren Liu
  • Xiaoxia Du
Original Communication

Abstract

Migraine is a common recurrent neurological disorder combining nausea, vomiting, and hypersensitivities to visual, auditory, olfactory and somatosensory stimuli. However, the dysfunction of the sensorimotor network in migraineurs has not been well clarified. In the present study, we evaluated the dysfunction of the sensorimotor network in 30 migraineurs without aura and in 31 controls by combining regional homogeneity (ReHo), amplitudes of low-frequency fluctuation (ALFF) and degree centrality (DC) analysis methods based on resting-state fMRI. A seed-based functional connectivity (FC) analysis was used to investigate whether the dysfunctional areas within the sensorimotor network exhibited abnormal FC with other brain areas. Compared to the controls, the migraineurs without aura exhibited significantly smaller ReHo, ALFF and DC values in the primary somatosensory cortex (S1) and right premotor cortex (PMC). The migraineurs showed weaker FC between the S1 and brain areas within the pain intensity and spatial discrimination pathways and trigemino-thalamo-cortical nociceptive pathway. We proposed that the dysfunction of the S1 and PMC and the decreased FC between the S1 and brain areas in migraineurs without aura may disrupt the discrimination of sensory features of pain and affect nociception pathways, and would be involved in the dysfunctional mechanism in migraine.

Keywords

Migraine Sensorimotor network Regional homogeneity Low-frequency fluctuation Degree centrality 

Notes

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (Nos. 81571658 and 81201082 to X. X. Du), the National Natural Science Foundation of China (Nos. 81200941 to J. Su, 81271302 to J. R. Liu), projects from Shanghai Jiao Tong University Medical Engineering Cross Research Foundation (No. YG2014MS07 to J. Su), research innovation project from Shanghai municipal science and technology commission (No. 14JC1404300, to J. R. Liu), the “prevention and control of chronic diseases project” of Shanghai Hospital Development Center (No. SHDC12015310, to J. R. Liu), project from SHSMU-ION Research Center for Brain Disorders (No. 2015NKX006, to J. R. Liu), project from Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support (No. 20161422 to J. R. Liu), Clinical Research Project from Shanghai Jiao Tong University School of Medicine (No. DLY201614 to J. R. Liu), and Biomedicine Key program from Shanghai Municipal Science and Technology Commission (No. 16411953100 to J. R. Liu).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Afridi SK, Giffin NJ, Kaube H, Friston KJ, Ward NS, Frackowiak RS, Goadsby PJ (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62:1270–1275CrossRefPubMedGoogle Scholar
  2. 2.
    Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2PubMedPubMedCentralGoogle Scholar
  3. 3.
    Amin FM, Hougaard A, Magon S, Asghar MS, Ahmad NN, Rostrup E, Sprenger T, Ashina M (2016) Change in brain network connectivity during PACAP38-induced migraine attacks: a resting-state functional MRI study. Neurology 86:180–187CrossRefPubMedGoogle Scholar
  4. 4.
    Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA, Paulin MG, Pavlova MA, Schmahmann JD, Sokolov AA (2015) Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14:197–220CrossRefPubMedGoogle Scholar
  5. 5.
    Bilgic B, Kocaman G, Arslan AB, Noyan H, Sherifov R, Alkan A, Asil T, Parman Y, Baykan B (2016) Volumetric differences suggest involvement of cerebellum and brainstem in chronic migraine. Cephalalgia 36:301–308CrossRefPubMedGoogle Scholar
  6. 6.
    Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Burch RC, Loder S, Loder E, Smitherman TA (2015) The prevalence and burden of migraine and severe headache in the United States: updated statistics from government health surveillance studies. Headache 55:21–34CrossRefPubMedGoogle Scholar
  8. 8.
    Burstein R, Noseda R, Borsook D (2015) Migraine: multiple processes, complex pathophysiology. J Neurosci 35:6619–6629CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cavina-Pratesi C, Valyear KF, Culham JC, Kohler S, Obhi SS, Marzi CA, Goodale MA (2006) Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period: evidence from event-related functional magnetic resonance imaging. J Neurosci 26:2704–2713CrossRefPubMedGoogle Scholar
  10. 10.
    Chong CD, Dodick DW, Schlaggar BL, Schwedt TJ (2014) Atypical age-related cortical thinning in episodic migraine. Cephalalgia 34:1115–1124CrossRefPubMedGoogle Scholar
  11. 11.
    Coppola G, Bracaglia M, Di Lenola D, Iacovelli E, Di Lorenzo C, Serrao M, Evangelista M, Parisi V, Schoenen J, Pierelli F (2016) Lateral inhibition in the somatosensory cortex during and between migraine without aura attacks: correlations with thalamocortical activity and clinical features. Cephalalgia 36:568–578CrossRefPubMedGoogle Scholar
  12. 12.
    DaSilva AF, Granziera C, Snyder J, Hadjikhani N (2007) Thickening in the somatosensory cortex of patients with migraine. Neurology 69:1990–1995CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    De Luca M, Smith S, De Stefano N, Federico A, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167:587–594CrossRefPubMedGoogle Scholar
  14. 14.
    Demarquay G, Mauguiere F (2015) Central nervous system underpinnings of sensory hypersensitivity in migraine: insights from neuroimaging and electrophysiological studies. Headache 56:1418–1438CrossRefPubMedGoogle Scholar
  15. 15.
    DosSantos MF, Ferreira N, Toback RL, Carvalho AC, DaSilva AF (2016) Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes. Front Neurosci 10:18CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Harriott AM, Schwedt TJ (2014) Migraine is associated with altered processing of sensory stimuli. Curr Pain Headache Rep 18:458CrossRefPubMedGoogle Scholar
  17. 17.
    Headache Classification Committee of the International Headache Society (2013) The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33:629–808CrossRefGoogle Scholar
  18. 18.
    Hickmott PW, Steen PA (2005) Large-scale changes in dendritic structure during reorganization of adult somatosensory cortex. Nat Neurosci 8:140–142CrossRefPubMedGoogle Scholar
  19. 19.
    Hodkinson DJ, Veggeberg R, Wilcox SL, Scrivani S, Burstein R, Becerra L, Borsook D (2015) Primary somatosensory cortices contain altered patterns of regional cerebral blood flow in the interictal phase of migraine. PLoS One 10:e0137971CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hofbauer RK, Rainville P, Duncan GH, Bushnell MC (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86:402–411PubMedGoogle Scholar
  21. 21.
    Hougaard A, Amin FM, Arngrim N, Vlachou M, Larsen VA, Larsson HB, Ashina M (2016) Sensory migraine aura is not associated with structural grey matter abnormalities. Neuroimage Clin 11:322–327CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hu W, Guo J, Chen N, Guo J, He L (2015) A meta-analysis of voxel-based morphometric studies on migraine. Int J Clin Exp Med 8:4311–4319PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50:1479–1496PubMedGoogle Scholar
  24. 24.
    Kim JH, Kim JB, Suh SI, Seo WK, Oh K, Koh SB (2014) Thickening of the somatosensory cortex in migraine without aura. Cephalalgia 34:1125–1133CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JH, Kim S, Suh SI, Koh SB, Park KW, Oh K (2010) Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30:53–61CrossRefPubMedGoogle Scholar
  26. 26.
    Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, Park KW, Koh SB (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28:598–604CrossRefPubMedGoogle Scholar
  27. 27.
    Liu J, Lan L, Li G, Yan X, Nan J, Xiong S, Yin Q, von Deneen KM, Gong Q, Liang F, Qin W, Tian J (2013) Migraine-related gray matter and white matter changes at a 1-year follow-up evaluation. J Pain 14:1703–1708CrossRefPubMedGoogle Scholar
  28. 28.
    Magon S, May A, Stankewitz A, Goadsby PJ, Schankin CJ, Ashina M, Amin FM, Muller J, Seifert CL, Chakravarty MM (2014) EHMTI-0186. Multi-center 3T MRI study of cortical thickness abnormalities in migraine. J Headache Pain 15:1CrossRefGoogle Scholar
  29. 29.
    Maleki N, Becerra L, Brawn J, Bigal M, Burstein R, Borsook D (2012) Concurrent functional and structural cortical alterations in migraine. Cephalalgia 32:607–620CrossRefPubMedGoogle Scholar
  30. 30.
    Maleki N, Gollub RL (2016) What have we learned from brain functional connectivity studies in migraine headache? Headache 56:453–461CrossRefPubMedGoogle Scholar
  31. 31.
    Moulton EA, Becerra L, Maleki N, Pendse G, Tully S, Hargreaves R, Burstein R, Borsook D (2011) Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine states. Cereb Cortex 21:435–448CrossRefPubMedGoogle Scholar
  32. 32.
    Moulton EA, Schmahmann JD, Becerra L, Borsook D (2010) The cerebellum and pain: passive integrator or active participator? Brain Res Rev 65:14–27CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ogino Y, Nemoto H, Goto F (2005) Somatotopy in human primary somatosensory cortex in pain system. Anesthesiology 103:821–827CrossRefPubMedGoogle Scholar
  34. 34.
    Oshiro Y, Quevedo AS, McHaffie JG, Kraft RA, Coghill RC (2009) Brain mechanisms supporting discrimination of sensory features of pain: a new model. J Neurosci 29:14924–14931CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oshiro Y, Quevedo AS, McHaffie JG, Kraft RA, Coghill RC (2007) Brain mechanisms supporting spatial discrimination of pain. J Neurosci 27:3388–3394CrossRefPubMedGoogle Scholar
  36. 36.
    Pierelli F, Iacovelli E, Bracaglia M, Serrao M, Coppola G (2013) Abnormal sensorimotor plasticity in migraine without aura patients. Pain 154:1738–1742CrossRefPubMedGoogle Scholar
  37. 37.
    Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, Comi G, Scotti G, Filippi M (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37:1765–1770CrossRefPubMedGoogle Scholar
  38. 38.
    Schwedt TJ (2013) Multisensory integration in migraine. Curr Opin Neurol 26:248–253CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schwedt TJ, Chiang CC, Chong CD, Dodick DW (2015) Functional MRI of migraine. Lancet Neurol 14:81–91CrossRefPubMedGoogle Scholar
  40. 40.
    Schwedt TJ, Chong CD, Chiang CC, Baxter L, Schlaggar BL, Dodick DW (2014) Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia 34:947–958CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vincent M, Hadjikhani N (2007) The cerebellum and migraine. Headache 47:820–833CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA 3rd, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196CrossRefPubMedGoogle Scholar
  44. 44.
    Wang JJ, Chen X, Sah SK, Zeng C, Li YM, Li N, Liu MQ, Du SL (2016) Amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in migraine patients: a resting-state functional MRI study. Clin Radiol 71:558–564CrossRefPubMedGoogle Scholar
  45. 45.
    Yan CG, Wang XD, Zuo XN, Zang YF (2016) DPABI: data processing and analysis for (resting-state) brain imaging. Neuroinformatics 14:339–351CrossRefPubMedGoogle Scholar
  46. 46.
    Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22:394–400CrossRefPubMedGoogle Scholar
  47. 47.
    Zhao L, Liu J, Dong X, Peng Y, Yuan K, Wu F, Sun J, Gong Q, Qin W, Liang F (2013) Alterations in regional homogeneity assessed by fMRI in patients with migraine without aura stratified by disease duration. J Headache Pain 14:85CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O, Milham MP (2012) Network centrality in the human functional connectome. Cereb Cortex 22:1862–1875CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jilei Zhang
    • 1
  • Jingjing Su
    • 2
  • Mengxing Wang
    • 1
  • Ying Zhao
    • 2
  • Qi-Ting Zhang
    • 2
  • Qian Yao
    • 2
  • Haifeng Lu
    • 1
  • Hui Zhang
    • 1
  • Ge-Fei Li
    • 2
  • Yi-Lan Wu
    • 2
  • Yi-Sheng Liu
    • 2
  • Feng-Di Liu
    • 2
    • 3
  • Mei-Ting Zhuang
    • 2
  • Yan-Hui Shi
    • 2
    • 3
  • Tian-Yu Hou
    • 2
  • Rong Zhao
    • 2
    • 3
  • Yuan Qiao
    • 2
    • 3
  • Jianqi Li
    • 1
  • Jian-Ren Liu
    • 2
    • 3
  • Xiaoxia Du
    • 1
  1. 1.Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials ScienceEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People’s HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
  3. 3.Clinical Research CenterShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations