Skip to main content

Advertisement

Log in

Does apolipoprotein A1 predict microstructural changes in subgenual cingulum in early Parkinson?

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Higher plasma cholesterol levels are associated with lower Parkinson’s disease (PD) risk. Apolipoprotein A-1 (ApoA-1) is a surface marker of brain HDL-like particles associated with the time of PD onset. Clinical correlates of serum Apolipoprotein A1 levels with structural brain connectivity in PD-related disorders remains unclear. Here, we applied a novel diffusion-weighted imaging approach [Diffusion Magnetic Resonance Imaging (MRI) Connectometry] to explore the association between ApoA-1 and structural brain connectivity in PD. Participants involved in this research were recruited from Parkinson’s Progression Markers Initiative (PPMI). Diffusion MRI connectometry was conducted using a multiple regression against apoA-1 for 36 patients with DTI measurements available in the baseline visit. Fiber results of the connectometry were then reconstructed for each patient, and diffusion parameters were extracted and regressed against apoA-1 levels. Connectometry results revealed the subgenual cingulum to be associated with ApoA-1, with different FDR yields. This result was further supported by significant negative correlation of Quantitative Anisotropic (QA) of left subgenual cingulum (Pearson’s coefficient = −0.398, p = 0.020) and Generalized Fractional Anisotropic (GFA) of right subgenual cingulum (Pearson’s coefficient −0.457, p = 0.007) with plasma apoA-1 levels, in a multiple regression model with age and sex. The subgenual cingulum encompasses fibers from the anterior cingulate cortex and anterior thalamus. These structures are involved in PD-associated psychosis and executive cognitive decline. We demonstrated for the first time that apoA-1, as a blood marker, can predict microstructural changes in white matter regions in PD patients with undisturbed cognition and mild motor disability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hottman DA, Chernick D, Cheng S, Wang Z, Li L (2014) HDL and cognition in neurodegenerative disorders. Neurobiology of disease 72 Pt A:22–36. doi:10.1016/j.nbd.2014.07.015

  2. Ikeda K, Nakamura Y, Kiyozuka T, Aoyagi J, Hirayama T, Nagata R, Ito H, Iwamoto K, Murata K, Yoshii Y, Kawabe K, Iwasaki Y (2011) Serological profiles of urate, paraoxonase-1, ferritin and lipid in Parkinson’s disease: changes linked to disease progression. Neuro-Degener Dis 8(4):252–258. doi:10.1159/000323265

    Article  CAS  Google Scholar 

  3. Guo X, Song W, Chen K, Chen X, Zheng Z, Cao B, Huang R, Zhao B, Wu Y, Shang HF (2015) The serum lipid profile of Parkinson’s disease patients: a study from China. Int J Neurosci 125(11):838–844. doi:10.3109/00207454.2014.979288

    Article  CAS  PubMed  Google Scholar 

  4. Singh NK, Banerjee BD, Bala K, Mitrabasu, Dung Dung AA, Chhillar N (2014) APOE and LRPAP1 gene polymorphism and risk of Parkinson’s disease. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 35(7):1075–1081. doi:10.1007/s10072-014-1651-6

    Google Scholar 

  5. Vitali C, Wellington CL, Calabresi L (2014) HDL and cholesterol handling in the brain. Cardiovasc Res 103(3):405–413. doi:10.1093/cvr/cvu148

    Article  CAS  PubMed  Google Scholar 

  6. Friedman B, Lahad A, Dresner Y, Vinker S (2013) Long-term statin use and the risk of Parkinson’s disease. Am J Manag Care 19(8):626–632

    PubMed  Google Scholar 

  7. Huang X, Alonso A, Guo X, Umbach DM, Lichtenstein ML, Ballantyne CM, Mailman RB, Mosley TH, Chen H (2015) Statins, plasma cholesterol, and risk of Parkinson’s disease: a prospective study. Mov Dis Off J Mov Dis Soc 30(4):552–559. doi:10.1002/mds.26152

    Article  CAS  Google Scholar 

  8. Du G, Lewis MM, Shaffer ML, Chen H, Yang QX, Mailman RB, Huang X (2012) Serum cholesterol and nigrostriatal R2* values in Parkinson’s disease. PLoS One 7(4):e35397. doi:10.1371/journal.pone.0035397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Swanson CR, Berlyand Y, Xie SX, Alcalay RN, Chahine LM, Chen-Plotkin AS (2015) Plasma apolipoprotein A1 associates with age at onset and motor severity in early Parkinson’s disease patients. Mov Disord Off J Mov Disord Soc 30(12):1648–1656. doi:10.1002/mds.26290

    Article  CAS  Google Scholar 

  10. Qiang JK, Wong YC, Siderowf A, Hurtig HI, Xie SX, Lee VM, Trojanowski JQ, Yearout D, Leverenz JB, Montine TJ, Stern M, Mendick S, Jennings D, Zabetian C, Marek K, Chen-Plotkin AS (2013) Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann Neurol 74(1):119–127. doi:10.1002/ana.23872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, Coffey C, Kieburtz K, Flagg E, Chowdhury S (2011) The parkinson progression marker initiative (PPMI). Prog Neurobiol 95(4):629–635

    Article  Google Scholar 

  12. Yeh FC, Badre D, Verstynen T (2015) Connectometry: a statistical approach harnessing the analytical potential of the local connectome. NeuroImage. doi:10.1016/j.neuroimage.2015.10.053

    Google Scholar 

  13. Jones DK, Christiansen KF, Chapman RJ, Aggleton JP (2013) Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: implications for neuropsychological investigations. Neuropsychologia 51(1):67–78. doi:10.1016/j.neuropsychologia.2012.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Martin P, Rodriguez-Blazquez C, Mario A, Arakaki T, Arillo VC, Chana P, Fernandez W, Garretto N, Martinez-Castrillo JC, Rodriguez-Violante M, Serrano-Duenas M, Ballesteros D, Rojo-Abuin JM, Chaudhuri KR, Merello M (2015) Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism Relat Disord 21(1):50–54. doi:10.1016/j.parkreldis.2014.10.026

    Article  PubMed  Google Scholar 

  15. Li C, Huang B, Zhang R, Ma Q, Yang W, Wang L, Wang L, Xu Q, Feng J, Liu L, Zhang Y, Huang R (2016) Impaired topological architecture of brain structural networks in idiopathic Parkinson’s disease: a DTI study. Brain Imaging Behav. doi:10.1007/s11682-015-9501-6

    Google Scholar 

  16. Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Brooks DJ, Barker RA, Burn DJ, O’Brien JT (2015) Gray and white matter imaging: A biomarker for cognitive impairment in early Parkinson’s disease? Mov Disord 31(1):103–110. doi:10.1002/mds.26312 

    Article  PubMed  Google Scholar 

  17. Vergani F, Martino J, Morris C, Attems J, Ashkan K, Dell’Acqua F (2016) Anatomic connections of the subgenual cingulate region. Neurosurgery 79(3):465–472. doi:10.1227/neu.0000000000001315

    Article  PubMed  Google Scholar 

  18. Munhoz RP, Moro A, Silveira-Moriyama L, Teive HA (2015) Non-motor signs in Parkinson’s disease: a review. Arq Neuropsiquiatr 73(5):454–462. doi:10.1590/0004-282x20150029

    Article  PubMed  Google Scholar 

  19. Nigro S, Riccelli R, Passamonti L, Arabia G, Morelli M, Nistico R, Novellino F, Salsone M, Barbagallo G, Quattrone A (2016) Characterizing structural neural networks in de novo Parkinson disease patients using diffusion tensor imaging. Hum Brain Mapp 37(12):4500–4510. doi:10.1002/hbm.23324

    Article  CAS  PubMed  Google Scholar 

  20. Ansari M, Rahmani F, Dolatshahi M, Pooyan A, Aarabi MH (2016) Brain pathway differences between Parkinson’s disease patients with and without REM sleep behavior disorder. Sleep Breathing Schlaf Atmung. doi:10.1007/s11325-016-1435-8

  21. Rahmani F, Ansari M, Pooyan A, Mirbagheri MM, Aarabi MH (eds) (2016) Differences in white matter microstructure between Parkinson's disease patients with and without REM sleep behavior disorder. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS

  22. Starkstein SE, Brockman S, Hayhow BD (2012) Psychiatric syndromes in Parkinson’s disease. Curr Opin Psychiatry 25(6):468–472. doi:10.1097/YCO.0b013e3283577ed1

    Article  PubMed  Google Scholar 

  23. Huebl J, Brucke C, Merkl A, Bajbouj M, Schneider GH, Kuhn AA (2016) Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression. Soc Cogn Affect Neurosci 11(8):1290–1298. doi:10.1093/scan/nsw038

    Article  PubMed  Google Scholar 

  24. Keedwell PA, Doidge AN, Meyer M, Lawrence N, Lawrence AD, Jones DK (2016) Subgenual cingulum microstructure supports control of emotional conflict. Cereb Cortex (New York, NY: 1991) 26(6):2850–2862. doi:10.1093/cercor/bhw030

  25. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A (2012) Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry 72(7):595–603

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schoene-Bake JC, Parpaley Y, Weber B, Panksepp J, Hurwitz TA, Coenen VA (2010) Tractographic analysis of historical lesion surgery for depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 35(13):2553–2563. doi:10.1038/npp.2010.132

    Article  Google Scholar 

  27. Zheng Z, Shemmassian S, Wijekoon C, Kim W, Bookheimer SY, Pouratian N (2014) DTI correlates of distinct cognitive impairments in Parkinson’s disease. Hum Brain Mapp 35(4):1325–1333. doi:10.1002/hbm.22256

    Article  PubMed  Google Scholar 

  28. Gattellaro G, Minati L, Grisoli M, Mariani C, Carella F, Osio M, Ciceri E, Albanese A, Bruzzone M (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. Am J Neuroradiol 30(6):1222–1226

    Article  CAS  PubMed  Google Scholar 

  29. Kim HJ, Kim SJ, Kim HS, Choi CG, Kim N, Han S, Jang EH, Chung SJ, Lee CS (2013) Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson’s disease. Neurosci Lett 550:64–68. doi:10.1016/j.neulet.2013.06.050

    Article  CAS  PubMed  Google Scholar 

  30. Hall JM, Ehgoetz Martens KA, Walton CC, O’Callaghan C, Keller PE, Lewis SJ, Moustafa AA (2016) Diffusion alterations associated with Parkinson’s disease symptomatology: a review of the literature. Parkinsonism Relat Disord 33:12–26. doi:10.1016/j.parkreldis.2016.09.026

    Article  PubMed  Google Scholar 

  31. Galantucci S, Agosta F, Stefanova E, Basaia S, van den Heuvel MP, Stojkovic T, Canu E, Stankovic I, Spica V, Copetti M, Gagliardi D, Kostic VS, Filippi M (2016) Structural brain connectome and cognitive impairment in Parkinson disease. Radiology. doi: 10.1148/radiol.2016160274

    PubMed  Google Scholar 

  32. Rossi ME, Ruottinen H, Saunamaki T, Elovaara I, Dastidar P (2014) Imaging brain iron and diffusion patterns: a follow-up study of Parkinson’s disease in the initial stages. Acad Radiol 21(1):64–71. doi:10.1016/j.acra.2013.09.018

    Article  PubMed  Google Scholar 

  33. Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  34. O’Callaghan C, Bertoux M, Hornberger M (2014) Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry 85(4):371–378. doi:10.1136/jnnp-2012-304558

    Article  PubMed  Google Scholar 

  35. Cooper M, Thapar A, Jones DK (2015) ADHD severity is associated with white matter microstructure in the subgenual cingulum. NeuroImage Clin 7:653–660. doi:10.1016/j.nicl.2015.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weingarten CP, Sundman MH, Hickey P, Chen NK (2015) Neuroimaging of Parkinson’s disease: expanding views. Neurosci Biobehav Rev 59:16–52. doi:10.1016/j.neubiorev.2015.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kovari E, Gold G, Herrmann FR, Canuto A, Hof PR, Bouras C, Giannakopoulos P (2003) Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson’s disease. Acta Neuropathol 106(1):83–88. doi:10.1007/s00401-003-0705-2

    PubMed  Google Scholar 

  38. Zhang J, Zhang YT, Hu WD, Li L, Liu GY, Bai YP (2015) Gray matter atrophy in patients with Parkinson’s disease and those with mild cognitive impairment: a voxel-based morphometry study. Int J Clin Exp Med 8(9):15383–15392

    PubMed  PubMed Central  Google Scholar 

  39. Lucas-Jiménez O, Díez-Cirard M, Ojeda N, Peña J, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N (2015) Verbal memory in Parkinson’s disease: a combined DTI and fMRI study. J Parkinson’s Dis 5(4):793–804. doi:10.3233/JPD-150623

    Article  Google Scholar 

  40. Mole JP, Subramanian L, Bracht T, Morris H, Metzler-Baddeley C, Linden DE (2016) Increased fractional anisotropy in the motor tracts of Parkinson’s disease suggests compensatory neuroplasticity or selective neurodegeneration. Eur Radiol. doi:10.1007/s00330-015-4178-1

    PubMed  PubMed Central  Google Scholar 

  41. Wen MC, Heng HS, Ng SY, Tan LC, Chan LL, Tan EK (2016) White matter microstructural characteristics in newly diagnosed Parkinson’s disease: an unbiased whole-brain study. Sci Rep 6:35601. doi:10.1038/srep35601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bezard E, Gross CE, Brotchie JM (2003) Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci 26(4):215–221. doi:10.1016/s0166-2236(03)00038-9

    Article  CAS  PubMed  Google Scholar 

  43. Yeh FC, Badre D, Verstynen T (2016) Connectometry: a statistical approach harnessing the analytical potential of the local connectome. NeuroImage 125:162–171. doi:10.1016/j.neuroimage.2015.10.053

    Article  PubMed  Google Scholar 

  44. Yeh F-C, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng W-YI (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 8(11):e80713. doi:10.1371/journal.pone.0080713

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by Grants from the Michael J Fox Foundation for Parkinson’s Research, the W Garfield Weston Foundation, and the Alzheimer’s Association, the Canadian Institutes for Health Research, and the Natural Sciences and Engineering Research Council of Canada. We thank Christian Beckmann and Simon Eickhoff for their advice on data analysis. Data used in this article were obtained from the Parkinsons Progression Markers Initiative (PPMI) database (http://www.ppmi-info.org/data). For up-to-date information on the study, visit http://www.ppmi-info.org. PPMI is sponsored and partially funded by the Michael J Fox Foundation for Parkinsons Research and funding partners, including AbbVie, Avid Radiopharmaceuticals, Biogen, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, GlaxoSmithKline (GSK), Eli Lilly and Company, Lundbeck, Merck, Meso Scale Discovery (MSD), Pfizer, Piramal Imaging, Roche, Servier, and UCB (http://www.ppmi-info.org/fundingpartners).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hadi Aarabi.

Ethics declarations

Ethical approval

All procedures performed here, including human participants, were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, F., Aarabi, M.H. Does apolipoprotein A1 predict microstructural changes in subgenual cingulum in early Parkinson?. J Neurol 264, 684–693 (2017). https://doi.org/10.1007/s00415-017-8403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-017-8403-5

Keywords

Navigation