Skip to main content

Advertisement

Log in

A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

PMM2-CDG (PMM2 gene mutations) is the most common congenital disorder of N-glycosylation. We conducted a nationwide survey to characterize the frequency, clinical features, glycosylation and genetic correlates in Italian patients with PMM2-CDG. Clinical information was obtained through a questionnaire filled in by the referral physicians including demographics, neurological and systemic features, neuroimaging data and genotype. Glycosylation analyses of serum transferrin were complemented by MALDI-Mass Spectrometry (MALDI-MS). Between 1996 and 2012, data on 37 Italian patients with PMM2-CDG were collected. All the patients with a severe phenotype were unable to walk unaided, 84 % had severe intellectual disability and 81 % microcephaly. Conversely, among 17 mildly affected patients 82 % had independent ambulation, 64 % had borderline to mild intellectual disability and 35 % microcephaly. Epilepsy and stroke-like events did not occur among patients with the mild phenotype. The rate and extent of systemic involvement were more pronounced in severely affected patients. The L32R misfolding mutation of the PMM2 gene occurred in 70 % of the patients with the mild phenotype and was associated with a less severe underglycosylation of serum Tf at MALDI-MS analyses. Despite their different disease severity, all patients had progressive (olivo)ponto-cerebellar atrophy that was the hallmark clinical feature for the diagnosis. A mild neurological phenotype of PMM2-CDG marked by preserved ambulatory ability and autonomy and associated with L32R mutation is particularly frequent in Italy. PMM2-CDG should be considered in patients with even mild developmental disability and/or unexplained progressive cerebellar atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freeze HH, Chong JX, Bamshad MJ, Ng BG (2014) Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 94:161–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Marquardt T, Denecke J (2003) Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 162:359–379

    CAS  PubMed  Google Scholar 

  3. Funke S, Gardeitchik T, Kouwenberg D et al (2013) Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A 161A:578–584

    Article  PubMed  Google Scholar 

  4. Freeze HH, Eklund EA, Ng BG, Patterson MC (2012) Neurology of inherited glycosylation disorders. Lancet Neurol 11:453–466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Barone R, Sturiale L, Garozzo D (2009) Mass spectrometry in the characterization of human genetic N-Glycosylation defects. Mass Spectrom Rev 28:517–542

    Article  CAS  PubMed  Google Scholar 

  6. Lefeber DJ, Morava E, Jaeken J (2011) How to find and diagnose a CDG due to defective N-glycosylation. J Inherit Metab Dis 34:849–852

    Article  PubMed Central  PubMed  Google Scholar 

  7. Grünewald S (2009) The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta 1792:827–834

    Article  PubMed  Google Scholar 

  8. Erlandson A, Bjursell C, Stibler H, Kristiansson B, Wahlström J, Martinsson T (2001) Scandinavian CDG-Ia patients: genotype/phenotype correlation and geographic origin of founder mutations. Hum Genet 108:359–367

    Article  CAS  PubMed  Google Scholar 

  9. Pérez-Dueñas B, García-Cazorla A, Pineda M et al (2009) Long-term evolution of eight Spanish patients with CDG type Ia: typical and atypical manifestations. Eur J Paediatr Neurol 13:444–451

    Article  PubMed  Google Scholar 

  10. de Lonlay P, Seta N, Barrot S et al (2001) A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet 38:14–19

    Article  PubMed Central  PubMed  Google Scholar 

  11. Barone R, Fiumara A, Jaeken J (2014) Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol 34:357–366

    Article  PubMed  Google Scholar 

  12. Sturiale L, Barone R, Palmigiano A et al (2008) Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics 8:3822–3832

    Article  CAS  PubMed  Google Scholar 

  13. Matthijs G, Schollen E, Van Schaftingen E, Cassiman JJ, Jaeken J (1998) Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A. Am J Hum Genet 62:542–550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pavone L, Fiumara A, Barone R et al (1996) Olivopontocerebellar atrophy leading to recognition of carbohydrate-deficient glycoprotein syndrome type I. J Neurol 243:700–705

    Article  CAS  PubMed  Google Scholar 

  15. Veneselli E, Biancheri R, Di Rocco M, Tortorelli S (1998) Neurophysiological findings in a case of carbohydrate-deficient glycoprotein (CDG) syndrome type I with phosphomannomutase deficiency. Eur J Paediatr Neurol 2:239–244

    Article  CAS  PubMed  Google Scholar 

  16. Bortot B, Cosentini D, Faletra F, Biffi S, De Martino E, Carrozzi M, Severini GM (2013) PMM2-CDG: phenotype and genotype in four affected family members. Gene 531:506–509

    Article  CAS  PubMed  Google Scholar 

  17. Barone R, Sturiale L, Fiumara A, Uziel G, Garozzo D, Jaeken J (2007) Borderline mental development in a congenital disorder of glycosylation (CDG) type Ia patient with multisystemic involvement (intermediate phenotype). J Inherit Metab Dis 30:107

    Article  CAS  PubMed  Google Scholar 

  18. Di Rocco M, Barone R, Adami A et al (2000) Carbohydrate-deficient glycoprotein syndromes: the Italian experience. J Inherit Metab Dis 23:391–395

    Article  PubMed  Google Scholar 

  19. Haeuptle MA, Hennet T (2009) Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat 30:1628–1641

    Article  CAS  PubMed  Google Scholar 

  20. Kjaergaard S, Schwartz M, Skovby F (2001) Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. Arch Dis Child 85:236–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Linssen M, Mohamed M, Wevers RA, Lefeber DJ, Morava E (2013) Thrombotic complications in patients with PMM2-CDG. Mol Genet Metab 109:107–111

    Article  CAS  PubMed  Google Scholar 

  22. Horslen SP, Clayton PT, Harding BN, Hall NA, Keir G, Winchester B (1991) Olivopontocerebellar atrophy of neonatal onset and disialotransferrin developmental deficiency syndrome. Arch Dis Child 66:1027–1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Drouin-Garraud V, Belgrand M, Grünewald S et al (2001) Neurological presentation of a congenital disorder of glycosylation CDG-Ia: implications for diagnosis and genetic counseling. Am J Med Genet 101:46–49

    Article  CAS  PubMed  Google Scholar 

  24. Aronica E, van Kempen AA, van der Heide M et al (2005) Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology. Acta Neuropathol 109:433–442

    Article  CAS  PubMed  Google Scholar 

  25. Vedolin L, Gonzalez G, Souza CF, Lourenço C, Barkovich AJ (2013) Inherited cerebellar ataxia in childhood: a pattern-recognition approach using brain MRI. Am J Neuroradiol 34:925–934

    Article  CAS  PubMed  Google Scholar 

  26. Sun L, Zhao Y, Zhou K, Freeze HH, Zhang YW, Xu H (2013) Insufficient ER-stress response causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital disorders of glycosylation. Mol Brain 6:52–60

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lo WY, Lagrange AH, Hernandez CC, Harrison R, Dell A, Haslam SM et al (2010) Glycosylation of b2 subunits regulates GABAA receptor biogenesis and channel gating. J Biol Chem 285:31348–31361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Matthijs G, Schollen E, Bjursell C, Erlandson A, Freeze H, Imtiaz F et al (2000) Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG-Ia). Hum Mutat 16:386–394

    Article  CAS  PubMed  Google Scholar 

  29. Bjursell C, Erlandson A, Nordling M, Nilsson S, Wahlström J, Stibler H et al (2000) PMM2 mutation spectrum, including 10 novel mutations, in a large CDG type 1A family material with a focus on Scandinavian families. Hum Mutat 16:395–400

    Article  CAS  PubMed  Google Scholar 

  30. Pérez B, Briones P, Quelhas D, Artuch R, Vega AI, Quintana E, Gort L et al (2011) The molecular landscape of phosphomannose mutase deficiency in iberian peninsula: identification of 15 population-specific mutations. J Inherit Metab Dis Rep 1:117–123

    Google Scholar 

  31. Westphal V, Peterson S, Patterson M et al (2001) Functional significance of PMM2 mutations in mildly affected patients with congenital disorders of glycosylation Ia. Genet Med 3:393–398

    Article  CAS  PubMed  Google Scholar 

  32. Coman D, McGill J, MacDonald R et al (2007) Congenital disorder of glycosylation type 1a: three siblings with a mild neurological phenotype. J Clin Neurosci 14:668–672

    Article  CAS  PubMed  Google Scholar 

  33. Vega AI, Pérez-Cerdá C, Abia D et al (2011) Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG): expression analysis of PMM2-CDG mutations. J Inherit Metab Dis 34:929–939

    Article  CAS  PubMed  Google Scholar 

  34. Vuillaumier-Barrot S, Hetet G, Barnier A et al (2000) Identification of four novel PMM2 mutations in congenital disorders of glycosylation (CDG) Ia French patients. J Med Genet 37:579–580

    Article  CAS  PubMed  Google Scholar 

  35. Mills K, Mills P, Jackson M et al (2006) Diagnosis of congenital disorders of glycosylation type-I using protein chip technology. Proteomics 6:2295–2304

    Article  CAS  PubMed  Google Scholar 

  36. Barone R, Sturiale V, Sofia A et al (2008) Clinical phenotype correlates to glycoprotein phenotype in a sib pair with CDG-Ia. Am J Med Genet A 146A:2103–2108

    Article  CAS  PubMed  Google Scholar 

  37. Hülsmeier AJ, Paesold-Burda P, Hennet T (2007) N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Mol Cell Proteomics 6:2132–2138

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors thank the families of the patients for their collaboration, Dr. G. Belfiore (University Hospital Policlinico Catania) for helping with selection MRI figures and Mrs. L. Keldermans (Centre for Human Genetics, Leuven) for her contribution to PMM2 molecular analyses. RB and AF (University of Catania) thank Association “Baco di Rame” for the support to the Centre for Metabolic Diseases Policlinico Catania. The Association “La vita e’ un dono” is acknowledged for supporting the fellowship of DM (OPBG-Rome). RP acknowledges Fondazione Pierfranco e Luisa Mariani, Milano, for the support to the Centre for Metabolic Disorders at Fondazione MBBM, San Gerardo Hospital, Monza. This study was partially financed by the Sixth Framework program of the European Union (Euroglycanet: LSHM-CT-2005-512131).

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standard

The study was conducted according to the disposals of the local research ethics board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Barone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barone, R., Carrozzi, M., Parini, R. et al. A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. J Neurol 262, 154–164 (2015). https://doi.org/10.1007/s00415-014-7549-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7549-7

Keywords

Navigation