Skip to main content
Log in

Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

We investigated three unrelated patients with tubular-aggregate myopathy and slowly progressive muscle weakness manifesting in the first years of life. All patients showed type 1 muscle fiber predominance and hypotrophy of type 2 fibers. Tubular aggregates were abundant. In all three patients mutations were identified in the gene STIM1, and the mutations were found to be de novo in all patients. In one of the patients the mutation was identified by exome sequencing. Two patients harbored the previously described mutation c.326A>G p.(His109Arg), while the third patient had a novel mutation c.343A>T p.(Ile115Phe). Taking our series together with previously published cases, the c.326A>G p.(His109Arg) seems to be a hotspot mutation that is characteristically related to early onset muscle weakness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Engel WK (1964) Mitochondrial aggregates in muscle disease. J Histochem Cytochem: Off J Histochem Soc 12:46–48

    Article  CAS  Google Scholar 

  2. Schiaffino S (2012) Tubular aggregates in skeletal muscle: just a special type of protein aggregates? Neuromuscul Disord 22:199–207. doi:10.1016/j.nmd.2011.10.005

    Article  PubMed  Google Scholar 

  3. Funk F, Ceuterick-de Groote C, Martin JJ et al (2013) Morphological spectrum and clinical features of myopathies with tubular aggregates. Histol Histopathol 28:1041–1054

    PubMed  Google Scholar 

  4. Bohm J, Chevessier F, Maues De Paula A et al (2013) Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 92:271–278. doi:10.1016/j.ajhg.2012.12.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Tulinius MH, Lundberg A, Oldfors A (1996) Early-onset myopathy with tubular aggregates. Pediatr Neurol 15:68–71

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. doi:10.1101/gr.107524.110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. doi:10.1038/ng.806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cingolani P, Platts A, le Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92. doi:10.4161/fly.19695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  CAS  PubMed  Google Scholar 

  11. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810. doi:10.1152/physrev.00057.2003

    Article  CAS  PubMed  Google Scholar 

  12. Field ML, Khan O, Abbaraju J, Clark JF (2006) Functional compartmentation of glycogen phosphorylase with creatine kinase and Ca2+ ATPase in skeletal muscle. J Theor Biol 238:257–268. doi:10.1016/j.jtbi.2005.05.017

    Article  CAS  PubMed  Google Scholar 

  13. Wanson JC, Drochmans P (1972) Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. J Cell Biol 54:206–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Stephenson DG (2011) In pursuit of the glycogen–[Ca2+] connection. J Physiol 589:451. doi:10.1113/jphysiol.2010.203943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Stoward PJ, Pearse AGE (eds) (1991) Histochemistry: theoretical and applied. Enzyme histochemistry, 4th edn, vol 3. Churchill-Livingstone, Edinburgh, xiv + pp1-727

  16. Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M (2011) Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci USA 108:1337–1342. doi:10.1073/pnas.1015125108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Liou J, Kim ML, Heo WD et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol: CB 15:1235–1241. doi:10.1016/j.cub.2005.05.055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445. doi:10.1083/jcb.200502019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905. doi:10.1038/nature04147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kiviluoto S, Decuypere JP, De Smedt H, Missiaen L, Parys JB, Bultynck G (2011) STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function. Skelet Muscle 1:16. doi:10.1186/2044-5040-1-16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided from the Italian Ministry of Health Ricerca Finalizzata (to EB, AD, SP, GT and FF), the Italian Ministry of Health Ricerca Corrente (to MN, AC and MT), and the Swedish Research Council (to AO; Proj. No 7122).

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bertini.

Additional information

M. Tartaglia, A. Oldfors, and E. Bertini contributed equally as the senior investigators in this project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedberg, C., Niceta, M., Fattori, F. et al. Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations. J Neurol 261, 870–876 (2014). https://doi.org/10.1007/s00415-014-7287-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7287-x

Keywords

Navigation