Signatures of vaginal microbiota by 16S rRNA gene: potential bio-geographical application in Chinese Han from three regions of China


The human microbiome is expected to be a new and promising tool for classification of human epithelial materials. Vaginal fluids are one of the most common biological samples in forensic sexual assault cases, and its identification is crucial to accurately determine the nature of the case. With the development of molecular biology technologies, the concept of vaginal microflora in different physiological states, ethnic groups, and geography is constantly improved. In this study, we conducted high-throughput sequencing of the V3–V4 hypervariable regions of the 16S rRNA gene in vaginal samples from Henan, Guangdong, and Xinjiang populations, in an attempt to reveal more information about the vaginal microflora in different regions. The results showed that the bio-geographical factors might affect the relative abundance of some vaginal microflora, but there was no significant difference in the composition of dominant bacteria in the vagina, which was mainly composed of Lactobacillus and Gardnerella. However, prediction models based on the random forest algorithm suggested that we might be able to distinguish vaginal fluids from populations of different regions according to the species-level OTUs in low abundance. It is promising that microbiome-based methods could provide more personal information when being attempted to trace the origin of body fluids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6


  1. 1.

    Martiny AC (2019) High proportions of bacteria are culturable across major biomes. ISME J Multidiscip J Microbial Ecol 13:2125–2128

    Google Scholar 

  2. 2.

    Ravi R, Asha R, Ahmed M, McGee HS, Perkins DL (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469

  3. 3.

    Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, Forney LJ (2004) Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology (Reading) 150:2565–2573

    CAS  Article  Google Scholar 

  4. 4.

    Xia XQ, Niu QS (2019) Forensic potential of skin microbial community. Forensic Sci Technol 44:195–200

    Google Scholar 

  5. 5.

    Shi C, Cai LT, Shao FY, Zheng SW, Wang BJ, He Y (2018) Analysis of microbial community structure in saliva from healthy Hna Chinese living in Shanghai. J Tongji Univ (Medical Science) 39:29–34

    Google Scholar 

  6. 6.

    Consortium HMP (2012) A framework for human microbiome research. NATURE 486:215–221

    Article  Google Scholar 

  7. 7.

    Consortium HMP (2012) Structure, function and diversity of the healthy human microbiome. NATURE 486:207–214

    Article  Google Scholar 

  8. 8.

    Consortium IHIR (2014) The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16:276–289

    Article  Google Scholar 

  9. 9.

    Kai-Nan Z, Li-Jie R, Yuan P, Ke M, Hui L, Yu C, Huai-Gu Z, Yi-Liang W (2016) Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population. J Forensic Legal Med 43

  10. 10.

    López CD, Vidaki A, Ralf A, González DM, Radjabzadeh D, Kraaij R, Uitterlinden AG, Haas C, Lao O, Kayser M (2019) Novel taxonomy-independent deep learning microbiome approach allows for accurate classification of different forensically relevant human epithelial materials. Forensic Sci Int Genet 41

  11. 11.

    He Y, Wu W, Zheng H, Li P, McDonald D, Sheng H, Chen M, Chen Z, Ji G, Zheng Z, Mujagond P, Chen X, Rong Z, Chen P, Lyu L, Wang X, Wu C, Yu N, Xu Y, Yin J, Raes J, Knight R, Ma W, Hong-W (2018) Author correction: regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24

  12. 12.

    Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ, Gordon JI (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108:4680–4687

    CAS  Article  Google Scholar 

  13. 13.

    Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, Strauss JF, Consortium TVM, Jefferson KK, Buck GA (2014) Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology (Reading, England) 160

  14. 14.

    Serrano MG, Parikh HI, Brooks JP, Edwards DJ, Arodz TJ, Edupuganti L, Huang B, Girerd PH, Bokhari YA, Bradley SP, Brooks JL, Dickinson MR, Drake JI, Duckworth RA, Fong SS, Glascock AL, Sophonie (2019) Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat Med 25:1001–1011

    CAS  Article  Google Scholar 

  15. 15.

    Borgdorff H, van der Veer C, van Houdt R, Alberts CJ, de Vries HJ, Bruisten SM, Snijder MB, Prins M, Geerlings SE, Schim VDLM, van de Wijgert J (2017) The association between ethnicity and vaginal microbiota composition in Amsterdam, the Netherlands. PLoS One 12:e181135

    Article  Google Scholar 

  16. 16.

    Vitali B, Abruzzo A, Mastromarino P (2017) Chapter 43 - Management of disease and disorders by prebiotics and probiotic therapy: probiotics in bacterial vaginosis. In: Floch MH, Ringel Y, Allan Walker W (eds) The microbiota in gastrointestinal pathophysiology. Academic Press, Boston, pp 399–407

    Google Scholar 

  17. 17.

    Huang H, Yao T, Wu W, Zhai C, Guan T, Song Y, Sun Y, Xiao C, Liang P, Chen L (2019) Specific microbes of saliva and vaginal fluid of Guangdong Han females based on 16S rDNA high-throughput sequencing. Int J Legal Med 133

  18. 18.

    Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  Google Scholar 

  19. 19.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  Article  Google Scholar 

  21. 21.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    CAS  Article  Google Scholar 

  22. 22.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  Article  Google Scholar 

  23. 23.

    McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

    CAS  Article  Google Scholar 

  24. 24.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  Article  Google Scholar 

  25. 25.

    Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  26. 26.

    Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  27. 27.

    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541

    CAS  Article  Google Scholar 

  28. 28.

    R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at

  29. 29.

    Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75:5227–5236

    CAS  Article  Google Scholar 

  30. 30.

    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  Article  Google Scholar 

  31. 31.

    Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    Article  Google Scholar 

  32. 32.

    Santos SGLD, Inge T, Hans V, Rita V, Marijke T, Marleen T, Leen V, Ellen D, Piet C, Mario V (2012) Longitudinal qPCR study of the dynamics of L. crispatus, L. iners, A. vaginae, (sialidase positive) G. vaginalis, and P. bivia in the vagina. PLoS One 7

  33. 33.

    Gupta K, Stapleton AE, Hooton TM, Roberts PL, Fennell CL, Stamm WE (1998) Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis 178:446–450

    CAS  Article  Google Scholar 

  34. 34.

    Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW (2005) Microbes on the Human Vaginal Epithelium. Proc Natl Acad Sci U S A 102:7952–7957

    CAS  Article  Google Scholar 

  35. 35.

    Martin HL, Richardson BA, Nyange PM, Lavreys L, Hillier SL, Chohan B, Mandaliya K, Ndinya-Achola JO, Bwayo J, Kreiss J (1999) Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J Infect Dis 180:1863–1868

    CAS  Article  Google Scholar 

  36. 36.

    Kyung KT, Thomas SM, Mengfei H, Shobha S, Reich CI, Frank JA, Yeater KM, Biggs DR, Noriko N, Rebecca S, Leigh SR, Tapping RI, Blanke SR, Slauch JM, Rex GH, Weisbaum JS, Olsen GJ, Hoyer LL, Wilson BA (2009) Heterogeneity of vaginal microbial communities within individuals. J Clin Microbiol 47

  37. 37.

    Yousuf B, Mishra A (2019) Exploring human bacterial diversity toward prevention of infectious disease and health promotion. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Academic Press, pp 519–533

  38. 38.

    Li K, Dan Z, Gesang L, Wang H, Zhou Y, Du Y, Ren Y, Shi Y, Nie Y (2016) Comparative analysis of gut microbiota of Native Tibetan and Han populations living at different altitudes. PLoS One 11:e155863

    Google Scholar 

  39. 39.

    He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng HF, Chen MX, Chen ZH, Ji GY, Zheng ZD, Mujagond P, Chen XJ, Rong ZH, Chen P, Lyu LY, Wang X, Wu CB, Yu N, Xu YJ, Yin J, Raes J, Knight R, Ma WJ, Zhou HW (2018) Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24:1532–1535

    CAS  Article  Google Scholar 

Download references


We are grateful to all volunteers who contributed samples for this study. And the authors would like to thank Peiwen Zhong for her guidance in bioinformatics.


This study was supported by the Natural Science Foundation of Guangdong Province (Grant no. 2020A1515010938), the Science and Technology Program of Guangzhou, China (Grant no. 2019030016), and the Opening Fund of Shanghai Key Laboratory of Forensic Medicine (Institute of Forensic Science, Ministry of Justice, China) (Grant No: KF1914).

Author information



Corresponding authors

Correspondence to Chao Liu or Ling Chen.

Ethics declarations

The project was approved by the biomedical ethical committee of the Southern Medical University (No. 2019-0011).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information


1. In this study, the microbial composition of vaginal fluids had specific characteristics, which was mainly composed of Lactobacillus and Gardnerella.

2. Bioinformatics analysis suggested that the vaginal fluids from populations of different regions could be distinguish by the species-level OTUs in low abundance.

3. The microbiome-based analysis of vaginal fluids might be potential to infer the bio-geographical information.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOCX 20 kb)


(DOCX 225 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, T., Wang, Z., Liang, X. et al. Signatures of vaginal microbiota by 16S rRNA gene: potential bio-geographical application in Chinese Han from three regions of China. Int J Legal Med (2021).

Download citation


  • Forensic medicine
  • 16S rDNA sequencing
  • Microbiome-based methods
  • Vaginal fluids
  • Bio-geographical factors