Abstract
When dealing with complex crimes such as rape and assault, every trace takes on an essential role. The hands are often the only means of defence and offence for the victim as well as a frequent area of contact with the environment; fingernails of a victim are a well-known possible source of DNA of the aggressor; nevertheless, they are more rarely treated as an area of interest for non-genetic material, particularly on living victims. The hyponychium, because of its physiological protective function, lends itself ideally to retaining different kinds of traces representative of an environment or various products and substrates that could shed light on the environment and objects involved in the event. We therefore tested how far this capability of the hyponychium could go by simulating the dynamics of contamination of the nail through scratching on different substrates (brick and mortar, painted wood, ivy leaves, cotton and woollen fabric, soil) and persistence of any contaminant at different time intervals. We have thus shown how these traces may remain in the living for up to 24 h after the event using inexpensive and non-destructive techniques such as the episcopic and optical microscope.
This is a preview of subscription content, access via your institution.


References
- 1.
GEFI (2013) Linee Guida per La Repertazione Di Tracce Biologiche per Le Analisi Di Genetica Forense Nel Percorso Assistenziale Delle Vittime Di Violenza Sessuale e/o Maltrattamento. http://www.gefi-isfg.org/temp/2202201374428.pdf. Accessed June 1, 2019
- 2.
AILF (2015) Violenza Sessuale - Protocollo per Gli Adulti. http://www.ailf.eu/files/works/violenza_sessuale_protocollo.pdf Accessed June 2, 2019
- 3.
FBI (1999) Trace evidence recovery guidelines by SWGMAT. Evidence Committee. Forensic Sci Commun 1(3). https://archives.fbi.gov/archives/about-us/lab/forensic-science-communications/fsc/oct1999/trace.htm. Accessed 2 June 2019
- 4.
Anderson TD, Ross JP, Roby RK, Lee DA, Holland MMA (1999) Validation study for the extraction and analysis of DNA from human nail material and its application to forensic casework. J Forensic Sci 44(5):1053–1056
- 5.
Oz C, Zamir A (2000) An evaluation of the relevance of routine DNA typing of fingernail clippings for forensic casework. J Forensic Sci 45(1):158–160
- 6.
Bozzo WR, Colussi AG, Ortiz MI, Laborde L, Pilili JP, Carini G, Lojo M (2015) Analysis of DNA from fingernail samples in criminal cases. Forensic Sci Int Genet Suppl Ser 5:e601–e602. https://doi.org/10.1016/j.fsigss.2015.09.237
- 7.
Foran D, Hebda L, Doran A (2015) Trace DNA from fingernails: increasing the success rate of widely collected forensic evidence. National Institute of Justice (NIJ). https://www.ncjrs.gov/pdffiles1/nij/grants/249534.pdf. Accessed 21 June 2019
- 8.
Ali EM, Edwards HG, Hargreaves MD, Scowen IJ (2008) Raman spectroscopic investigation of cocaine hydrochloride on human nail in a forensic context. Anal Bioanal Chem 390(4):1159–1166. https://doi.org/10.1007/s00216-007-1776-z
- 9.
Ali EM, Edwards HG, Hargreaves MD, Scowen IJ (2009) Detection of explosives on human nail using confocal Raman microscopy. J Raman Spectrosc 40(2):144–149. https://doi.org/10.1002/jrs.2096
- 10.
Locard E (1930) Analyses of dust traces parts I, II and III. Am J Police Sci 276–298(401–418):496–514
- 11.
Stoney DA, Stoney PL (2015) Critical review of forensic trace evidence analysis and the need for a new approach. Forensic Sci Int 251:159–170. https://doi.org/10.1016/j.forsciint.2015.03.022
- 12.
WHO (2009) How to Handwash? World Health Organization. https://www.who.int/docs/default-source/patient-safety/how-to-handwash-poster.pdf?sfvrsn=7004a09d_2. Accessed 20 July 2020
- 13.
Soil Science Division Staff (2017) Soil survey manual. Government Printing Office, Washington, D.C.
- 14.
Oyama M, Takehara H (1967) Revised standard soil color charts. Van Boekhoven-Bosch, Utrecht
- 15.
Robertson J, Grieve M (1999) Forensic examination of fibres. CRC Press, Boca Raton
- 16.
Mc Rae SG (1991) Pedologia Pratica: Come Studiare i Suoli Sul Campo. Zanichelli, Bologna
- 17.
Costantini EA (2007) Linee guida dei metodi di rilevamento e informatizzazione dei dati pedologici. CRA-ABP, Firenze
- 18.
Gerola FM (1997) Biologia Vegetale sistematica filogenetica. UTET, Torino
- 19.
De Gelder J, Vandenabeele P, Govaert F, Moens L (2005) Forensic analysis of automotive paints by Raman spectroscopy. J Raman Spectrosc 36(1):1059–1067. https://doi.org/10.1002/jrs.1408
- 20.
Zięba-Palus J, Trzcińska BM (2013) Application of infrared and Raman spectroscopy in paint trace examination. J Forensic Sci 58(5):1359–1363. https://doi.org/10.1111/1556-4029.12183
- 21.
Kirkbride K, Tungol M (1999) Infrared microspectroscopy of fibres. In: Robertson J, Grieve M (eds) Forensic examination of fibres, 2nd edn. CRC, New York, pp 179–222
- 22.
West MJ, Went MJ (2011) Detection of drugs of abuse by Raman spectroscopy. Drug Test Anal 3(9):532–538. https://doi.org/10.1002/dta.217
- 23.
Zhang W, Tang Y, Shi A, Bao L, Shen Y, Shen R, Ye Y (2018) Recent developments in spectroscopic techniques for the detection of explosives. Materials (Basel) 11(8):1364. https://doi.org/10.3390/ma11081364
- 24.
Zaya DN, Ashley MV (2012) Plant genetics for forensic applications. Methods Mol Biol 862:35–52. https://doi.org/10.1007/978-1-61779-609-8_4
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Caccia, G., Re, L., Caccianiga, M. et al. Traces under nails in clinical forensic medicine: not just DNA. Int J Legal Med (2021). https://doi.org/10.1007/s00414-021-02519-w
Received:
Accepted:
Published:
Keywords
- Forensic science
- Clinical forensic medicine
- Nails
- Environmental and product traces