Maximum tensile stress and strain of skin of the domestic pig—differences concerning pigs from organic and non-organic farming


The purpose of this work has been to determine differences in biomechanical properties of porcine skin from organic and non-organic farming as porcine skin is widely used as a model for human skin. A test apparatus was used, using gravity to stretch and finally tear a dumbbell-shaped specimen of prepared abdominal skin with a testing surface area of 25 × 4 mm. A total of 32 specimens were taken from seven individual pigs, three from organic and four from non-organic farming, in different orientations with respect to the Langer’s lines. The tests were performed at a dynamic speed of around 1.66 m/s (corresponding to a nominal strain rate of 67 s−1). Engineering strain at rupture was higher in pig skin from non-organic farming with values up to 321% as opposed to 90% in organic pig skin. The maximum tensile stress found in non-organic pig skin was lower than in pig skin from organic farming with maximum values of 34 MPa as opposed to 58 MPa. The reason for the difference in biomechanical properties is unclear; the effect of sunlight is discussed as well as other factors like age and exercise. It seems that the biomechanical properties of porcine skin from organic farming are more similar to those of human skin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Cronin DS (2011) Explicit finite element method applied to impact biomechanics problems. IRCOBI Conference Proceedings: 240–254

  2. 2.

    Forman JL, Kent RW, Mroz K et al (2012) Predicting rib fracture risk with whole-body finite element models: development and preliminary evaluation of a probabilistic analytical framework. AAAM Ann Conf Proc 56:109–124

    Google Scholar 

  3. 3.

    Kieser J, Taylor M, Carr D (2012) Forensic biomechanics. Developments in Forensic Science, Wiley

    Google Scholar 

  4. 4.

    Whittle K, Kieser J, Ichim I et al (2008) The biomechanical modelling of non-ballistic skin wounding: blunt-force injury. Forensic Sci Med Pat 4(1):33–39.

    Google Scholar 

  5. 5.

    Wong B, Kieser JA, Ichim I et al (2008) Experimental simulation of non-ballistic wounding by sharp and blunt punches. Forensic Sci Med Pat 4(4):212–220.

    Google Scholar 

  6. 6.

    BGIA – Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (2009) BG/BGIA-Empfehlungen für die Gefährdungsbeurteilung nach Maschinenrichtlinie: Gestaltung von Arbeitsplätzen mit kollaborierenden Robotern: Umfang: 37 Seiten

  7. 7.

    Wei JCJ, Edwards GA, Martin DJ et al (2017) Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci Rep 7(1):15885.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Monteiro-Riviere NA, Bristol DG, Manning TO et al (1990) Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J Invest Dermatol 95(5):582–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Arumugam V, Naresh MD, Sanjeevi R (1994) Effect of strain rate on the fracture behaviour of skin. J Biosci 19(3):307–313.

    Google Scholar 

  10. 10.

    Lee Y, Hwang K (2002) Skin thickness of Korean adults. Surg Radiol Anat 24(3-4):183–189.

    CAS  PubMed  Google Scholar 

  11. 11.

    Weinig E, Zink P (1967) Über mechanische Eigenschaften der menschlichen Leichenhaut. Deut Z Ges Geric Med 60(3):61–79.

    CAS  Google Scholar 

  12. 12.

    Barker DE (1951) Skin thickness in the human. Plast Reconstr Surg (1946) 7(2):115–116

    CAS  Google Scholar 

  13. 13.

    Griffin MF, Leung BC, Premakumar Y et al (2017) Comparison of the mechanical properties of different skin sites for auricular and nasal reconstruction. J Otolaryngol Head Neck Surg 46(1):33.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Fazekas IG, Kósa F, Basch A (1968) Uber die Reissfestigkeit der Haut verschiedener Körperregionen (On the tensile strength of skin in various body areas). Deut Z Ges Geric Med 64(2):62–92

    CAS  Google Scholar 

  15. 15.

    Falland-Cheung L, Scholze M, Lozano PF et al (2018) Mechanical properties of the human scalp in tension. J Mech Behav Biomed Mater 84:188–197.

    PubMed  Google Scholar 

  16. 16.

    Pittar N, Winter T, Falland-Cheung L et al (2018) Scalp simulation - a novel approach to site-specific biomechanical modeling of the skin. J Mech Behav Biomed Mater 77:308–313.

    CAS  PubMed  Google Scholar 

  17. 17.

    Trotta A, Ní Annaidh A (2019) Mechanical characterisation of human and porcine scalp tissue at dynamic strain rates. J Mech Behav Biomed Mater 100:103381.

    CAS  PubMed  Google Scholar 

  18. 18.

    Thali MJ, Kneubuehl BP, Zollinger U et al (2002) The “skin-skull-brain model”: a new instrument for the study of gunshot effects. Forensic Sci Int 125(2-3):178–189.

    CAS  PubMed  Google Scholar 

  19. 19.

    Thali MJ, Kneubuehl BP, Dirnhofer R (2002) A “skin-skull-brain model” for the biomechanical reconstruction of blunt forces to the human head. Forensic Sci Int 125(2-3):195–200.

    PubMed  Google Scholar 

  20. 20.

    Ankersen J, Birkbeck AE, Thomson RD et al (1999) Puncture resistance and tensile strength of skin simulants. P I Mech Eng H 213(6):493–501.

    CAS  Google Scholar 

  21. 21.

    Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32(9):1384–1402.

    Google Scholar 

  22. 22.

    Meyer W, Schwarz R, Neurand K (1978) The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol 7:39–52

    CAS  PubMed  Google Scholar 

  23. 23.

    Meyer W (1996) Bemerkungen zur Eignung der Schweinehaut als biologisches Modell für die Haut des Menschen (Comments on the suitability of swine skin as a biological model for human skin). Hautarzt 47(3):178–182

    CAS  PubMed  Google Scholar 

  24. 24.

    Mawafy M, Cassens RG (1975) Microscopic structure of pig skin. J Anim Sci 41(5):1281–1290

    CAS  PubMed  Google Scholar 

  25. 25.

    Allam SS, Heidemann E (1974) Isolation, characterization and comparative studies of the N-terminal peptides from soluble pig skin collagen. FEBS Lett 39(2):187–189

    CAS  PubMed  Google Scholar 

  26. 26.

    Meyer W, Neurand K, Radke B (1982) Collagen fibre arrangement in the skin of the pig. J Anat 134(Pt 1):139–148

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ní Annaidh A, Bruyère K, Destrade M et al (2012) Characterization of the anisotropic mechanical properties of excised human skin. J Mech Behav Biomed Mater 5(1):139–148.

    PubMed  Google Scholar 

  28. 28.

    Vardaxis NJ, Brans TA, Boon ME et al (1997) Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies. J Anat 190(Pt 4):601–611.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Langer K (ed) (1861) Zur Anatomie und Physiologie der Haut. Über die Spaltbarkeit der Cutis

  30. 30.

    Rose EH, Ksander GA, Vistnes LM (1976) Skin tension lines in the domestic pig. Plast Reconstr Surg 57(6):729–732

    CAS  PubMed  Google Scholar 

  31. 31.

    Lim J, Hong J, Chen WW et al (2011) Mechanical response of pig skin under dynamic tensile loading. Int J Impact Eng 38(2-3):130–135.

    Google Scholar 

  32. 32.

    Jansen LH, Rottier PB (1958) Comparison of the mechanical properties of strips of human abdominal skin excised from below and from above the umbilic. Dermatologica 117(4):252–258

    CAS  PubMed  Google Scholar 

  33. 33.

    Ridge MD, Wright V (1966b) Mechanical properties of skin: a bioengineering study of skin structure. J Appl Physiol 21(5):1602–1606.

    CAS  PubMed  Google Scholar 

  34. 34.

    Yamada H (ed) (1970) Strength of biological materials. Williams & Wilkins, Baltimore

    Google Scholar 

  35. 35.

    Holzmann H, Korting GW, Kobelt D et al (1971) Prüfung der mechanischen Eigenschaften von menschlicher Haut in Abhängigkeit von Alter und Geschlecht (Studies on the mechanical properties of human skin in relation to age and sex). Arch Klin Exp Dermatol 239(4):355–367

    CAS  PubMed  Google Scholar 

  36. 36.

    Dunn MG, Silver FH, Swann DA (1985) Mechanical analysis of hypertrophic scar tissue: structural basis for apparent increased rigidity. J Invest Dermatol 84(1):9–13

    CAS  PubMed  Google Scholar 

  37. 37.

    Groves RB, Coulman SA, Birchall JC et al (2013) An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater 18:167–180.

    PubMed  Google Scholar 

  38. 38.

    Jacquemoud C, Bruyere-Garnier K, Coret M (2007) Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test. J Biomech 40(2):468–475.

    CAS  PubMed  Google Scholar 

  39. 39.

    Gallagher AJ, Ní Anniadh A, Bruyere K et al. (eds) (2012) Dynamic tensile properties of human skin

  40. 40.

    Doerfel S (2015) Generierung von Grundlagen für die Simulation von Weichgewebeverletzungen. Dissertation, Ludwig-Maximilians-Universität München

  41. 41.

    Jussila J, Leppäniemi A, Paronen M et al (2005) Ballistic skin simulant. Forensic Sci Int 150(1):63–71.

    PubMed  Google Scholar 

  42. 42.

    Falland-Cheung L, Waddell JN, Chun Li K et al (2017) Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model. J Mech Behav Biomed Mater 68:303–307.

    CAS  PubMed  Google Scholar 

  43. 43.

    Humphrey C, Kumaratilake J (2016) Ballistics and anatomical modelling - a review. Legal Med-Tokyo 23:21–29.

    Google Scholar 

  44. 44.

    Jin Y, Haitao L, Cheng W et al (2019) The experimental and numerical investigation on the ballistic limit of BB-Gun pellet versus skin simulant. Forensic Sci Int 298:393–397.

    PubMed  Google Scholar 

  45. 45.

    Bir CA, Resslar M, Stewart S (2012) Skin penetration surrogate for the evaluation of less lethal kinetic energy munitions. Forensic Sci Int 220(1-3):126–129.

    CAS  PubMed  Google Scholar 

  46. 46.

    Wilkes GL, Brown IA, Wildnauer RH (1973) The biomechanical properties of skin. CRC Crit Rev Bioeng 1(4):453–495

    CAS  PubMed  Google Scholar 

  47. 47.

    Daly CH, Odland GF (1979) Age-related changes in the mechanical properties of human skin. J Invest Dermatol 73(1):84–87

    CAS  PubMed  Google Scholar 

  48. 48.

    Biniek K, Levi K, Dauskardt RH (2012) Solar UV radiation reduces the barrier function of human skin. Proc Natl Acad Sci U S A 109(42):17111–17116.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Levi K (2013) UV damage and sun care: Deciphering mechanics of skin to develop next generation therapies. J Mech Behav Biomed Mater 28:471–473.

    CAS  PubMed  Google Scholar 

  50. 50.

    Piérard GE, Uhoda I, Piérard-Franchimont C (2003) From skin microrelief to wrinkles. An area ripe for investigation. J Cosmet Dermatol 2(1):21–28.

    PubMed  Google Scholar 

  51. 51.

    Vedrenne N, Coulomb B, Danigo A et al (2012) The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. Pathol Biol 60(1):20–27.

    CAS  PubMed  Google Scholar 

  52. 52.

    Bernstein EF, Chen YQ, Kopp JB et al (1996) Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J Am Acad Dermatol 34(2 Pt 1):209–218

    CAS  PubMed  Google Scholar 

  53. 53.

    Cox HT (1941) The cleavage lines of the skin. Br J Surg 29(114):234–240.

    Google Scholar 

  54. 54.

    Oxlund H, Andreassen TT (1980) The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 131(Pt 4):611–620

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Carton RW, Dainuskas J, Clark JW (1962) Elastic properties of single elastic fibers. J Appl Physiol 17:547–551.

    CAS  PubMed  Google Scholar 

  56. 56.

    Deroy C, Destrade M, Mc Alinden A et al (2017) Non-invasive evaluation of skin tension lines with elastic waves. Skin Res Technol 23(3):326–335.

    CAS  PubMed  Google Scholar 

  57. 57.

    Borges AF (1984) Relaxed skin tension lines (RSTL) versus other skin lines. Plast Reconstr Surg 73(1):144–150

    CAS  PubMed  Google Scholar 

  58. 58.

    Holzapfel GA, Ogden RW (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math Mech Solids 14(5):474–489.

    Google Scholar 

  59. 59.

    Viidik A, Sandqvist L, Mägi M (1965) Influence of postmortal storage on tensile strength characteristics and histology of rabbit ligaments. Acta Orthop Scand 36(sup79):3–38.

    Google Scholar 

  60. 60.

    Nishimura T, Liu A, Hattori A et al (1998) Changes in mechanical strength of intramuscular connective tissue during postmortem aging of beef. J Anim Sci 76(2):528–532

    CAS  PubMed  Google Scholar 

  61. 61.

    Viidik A, Lewin T (1966) Changes in tensile strength characteristics and histology of rabbit ligaments induced by different modes of postmortal storage. Acta Orthop Scand 37(2):141–155

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sylvia Schick.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


• Maximum tensile stress and tensile strain at rupture of porcine skin was determined in dynamic tests

• Porcine skin from organic farming shows higher maximum tensile stress values

• Porcine skin from organic farming shows lower elongation values

• Porcine skin from organic farming seems to be a more accurate model for human skin



Table 4 Test matrix and results

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schick, S., Leiderer, M., Lanzl, F. et al. Maximum tensile stress and strain of skin of the domestic pig—differences concerning pigs from organic and non-organic farming. Int J Legal Med 134, 1501–1510 (2020).

Download citation


  • Tissue biomechanics
  • Dynamic tensile test
  • Porcine skin
  • Anisotropy
  • Langer’s lines