Post-mortem in situ stability of serum markers of cerebral damage and acute phase response


The aim of the given study was to test the in situ stability of biochemical markers of cerebral damage and acute phase response in the early post-mortem interval to assess their usability for forensic pathology. A monocentric, prospective study investigated post-mortem femoral venous blood samples at four time points obtained within 48 h post-mortem starting at the death of 20 deceased, using commercial immunoassays for the ten parameters: S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), C-reactive protein (CRP), procalcitonin (PCT), ferritin, soluble tumor necrosis factor receptor type 1 (sTNFR1), and lactate dehydrogenase (LDH). Significant changes in serum levels were observed only later than 2 h after death for all markers. Inter-laboratory comparability was high, and intra-assay precision was sufficient for most markers. Most of the biomarker levels depended on the severity of hemolysis and lipemia but were robust against freeze-thaw cycles. Serum levels increased with longer post-mortem intervals for S100B, NSE, ferritin, sTNFR1, and LDH (for all p < 0.001) but decreased over this period for CRP (p = 0.089) and PCT (p < 0.001). Largely unchanged median values were found for GFAP (p = 0.139), BDNF (p = 0.106), and IL-6 (p = 0.094). Serum levels of CRP (p = 0.059) and LDH (p = 0.109) did not differ significantly between the final ante-mortem (resuscitation) and the first post-mortem sample (moment of death). Collecting the post-mortem blood sample as soon as possible will reduce the influence of post-mortem blood changes. Serum GFAP for detection of cerebral damage as well as serum IL-6 and CRP as proof of acute phase response seemed to be preferable due to their in situ stability in the first 2 days after death.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Coe J (1993) Post-mortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol 14:91–111

    CAS  PubMed  Google Scholar 

  2. 2.

    Palmiere C, Mangin P (2012a) Post-mortem chemistry update part I. Int J Legal Med 126:187–198

    PubMed  Google Scholar 

  3. 3.

    Palmiere C, Mangin P (2012b) Post-mortem chemistry update part II. Int J Legal Med 126:199–215

    PubMed  Google Scholar 

  4. 4.

    Maeda H, Zhu BL, Ishikawa T, Quan L, Michiue T (2009) Significance of post-mortem biochemistry in determining the cause of death. Legal Med 11:46–49

    Google Scholar 

  5. 5.

    Luna A (2009) Is post-mortem biochemistry really useful? Why is it not widely used in forensic pathology? Legal Med 11:27–30

    Google Scholar 

  6. 6.

    Ondruschka B, Schuch S, Pohlers D, Franke H, Dreßler J (2018) Acute phase response after fatal traumatic brain injury. Int J Legal Med 132:531–539.

    PubMed  Google Scholar 

  7. 7.

    Ondruschka B, Sieber M, Kirsten H; Franke H, Dreßler J (2018) Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids. J Neurotrauma 35:2044–2055.

    PubMed  Google Scholar 

  8. 8.

    Sieber M, Dreßler J, Franke, Pohlers D, Ondruschka B (2018) Post-mortem biochemistry of NSE and S100B. A supplemental tool for detecting a lethal traumatic brain injury? J Forensic Legal Med 55:65–73.

    Google Scholar 

  9. 9.

    Woodcock T, Morganti-Kossmann MC (2013) The role of markers of inflammation in traumatic brain injury. Front Neurol 4:18

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tsokos M, Reichelt U, Jung R, Nierhaus A, Püschel K (2001) Interleukin-6 and C-reactive protein serum levels in sepsis-related fatalities during the early postmortem period. Forensic Sci Int 119:47–56.

    CAS  PubMed  Google Scholar 

  11. 11.

    Tsokos M, Reichelt U, Nierhaus A, Püschel K (2001) Serum procalcitonin (PCT): a valuable biochemical parameter for the post-mortem diagnosis of sepsis. Int J Legal Med 114:237–243.

    CAS  PubMed  Google Scholar 

  12. 12.

    Soar J, Nolan JP, Böttiger BW, Perkins GD, Loot C, Carli P, Pellis T, Sandroni C, Skrifvars MB, Smith GB, Sunde K, Deakin CD et al (2015) European resuscitation council guidelines for resuscitation 2015. Section 3. Adult advanced life support. Resuscitation 95:100–147

    PubMed  Google Scholar 

  13. 13.

    Hess C, Krueger L, Unger M, Madea B (2017) Freeze- and -thaw stability and long-term-stability of 84 synthetic cannabinoids in serum. Drug Test Anal 9:1506–1511

    CAS  PubMed  Google Scholar 

  14. 14.

    German Medical Assocation (2015) Revision of the “Guideline of the German Medical Association on quality assurance in medical laboratory examinations - Rili-BAEK”. J Lab Med 39:26–69

    Google Scholar 

  15. 15.

    Ishikawa T, Hamel M, Zhu B-L, Li D-R, Zhao D, Michiue T, Maeda H (2008) Comparative evaluation of postmortem serum concentrations of neopterin and C-reactive protein. Forensic Sci Int 179:135–143

    CAS  PubMed  Google Scholar 

  16. 16.

    Palmiere C, Bardy D, Mangin P, Augsburger M (2013) Value of sTREM-1, procalcitonin and CRP as laboratory parameters for postmortem diagnosis of sepsis. J Inf Secur 67:545–555

    Google Scholar 

  17. 17.

    Bode-Jänisch S, Schütz S, Schmidt A, Tschernig T, Debertin AS, Fieguth A, Hagemeier L, Teske J, Suerbaum S, Klintschar M, Bange FC (2013) Serum procalcitonin levels in the postmortem diagnosis of sepsis. Forensic Sci Int 226:266–272

    PubMed  Google Scholar 

  18. 18.

    Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, Feigin V, Maas A (2016) Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health 1:e76–e83

    PubMed  Google Scholar 

  19. 19.

    Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H (2016) Traumatic brain injuries. Nat Rev Dis Primers 2:16084

    PubMed  Google Scholar 

  20. 20.

    Chirica VI (2017) Useful markers to assess traumatic and hypoxic brain injury. Rom J Legal Med 25:146–151

    Google Scholar 

  21. 21.

    Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18:165–180

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H (2006a) Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases. Legal Med 8:71–77

    CAS  PubMed  Google Scholar 

  23. 23.

    Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H (2006b) Immunohistochemical distribution of S-100 protein in the cerebral cortex with regard to the cause of death in forensic autopsy. Legal Med 8:78–85

    CAS  PubMed  Google Scholar 

  24. 24.

    Goede A, Dreßler J, Sommer G, Schober K, Franke H, Ondruschka B (2015) Wundalterdiagnostik nach letalem Schädel-Hirn-Trauma. Rechtsmedizin 25:261–267

    Google Scholar 

  25. 25.

    Ondruschka B, Pohlers D, Sommer G, Schober K, Teupser D, Franke H, Dreßler J (2013) S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases. J Neurotrauma 30:1862–1871

    Google Scholar 

  26. 26.

    Osuna E, Perez-Carceles MD, Luna A, Pounder DJ (1992) Efficacy of cerebro-spinal fluid biochemistry in the diagnosis of brain insult. Forensic Sci Int 52:193–198

    CAS  PubMed  Google Scholar 

  27. 27.

    Raabe A, Kopetsch O, Groß U, Zimmermann M, Gebhart P (2003) Measurements of serum S-100B protein: effects of storage time and temperature on pre-analytical stability. Clin Chem Lab Med 41:700–703

    CAS  PubMed  Google Scholar 

  28. 28.

    Beaudeux JL, Léger P, Dequen L, Gandjbakhch I, Coriat P, Foglietti MJ (2000) Influence of hemolysis on the measurement of S-100 protein and neuron-specific enolase plasma concentrations during coronary artery bypass grafting. Clin Chem 46:989–990

    CAS  PubMed  Google Scholar 

  29. 29.

    Missler U, Wiesmann M, Wittmann G (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45:138–141

    CAS  PubMed  Google Scholar 

  30. 30.

    Ramont L, Thoannes H, Volondat, Chastang F, Millet MC, Maquart FX (2005) Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 43:1215–1217

    CAS  PubMed  Google Scholar 

  31. 31.

    Verfaillie CJ, Delanghe JR (2010) Hemolysis correction factor in the measurement of serum neuron-specific enolase. Clin Chem Lab Med 48:891–892

    CAS  PubMed  Google Scholar 

  32. 32.

    Korley FK, Diaz-Arrastia R, Wu AH, Yue JK, Manley GT, Sair HI, Van Eyk J, Everett AD et al (2016) Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury. J Neurotrauma 33:215–225

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Failla MD, Conley YP, Wagner AK (2016) Brain-derived neurotrophic factor (BDNF) in traumatic brain injury-related mortality: interrelationships between genetics and acute systemic and central nervous system BDNF profiles. Neurorehabil Neural Repair 30:83–93

    PubMed  Google Scholar 

  34. 34.

    Tsokos M (2007) Postmortem diagnosis of sepsis. Forensic Sci Int 165:155–164

    PubMed  Google Scholar 

  35. 35.

    Mimasaka S, Funayama M, Hashiyada M, Nata M, Tsunenari S (2007) Significance of levels of IL-6 and IL-8 after trauma. A study of 11 cytokines post-mortem using multiplex immunoassay. Injury 38:1047–1051

    CAS  PubMed  Google Scholar 

  36. 36.

    Schrag B, Roux-Lombard P, Schneiter D, Vaucher P, Mangin P, Palmiere C (2012) Evaluation of C-reactive protein, procalcitonin, tumor necrosis factor alpha, interleukin-6, and interleukin-8 as diagnostic parameters in sepsis-related fatalities. Int J Legal Med 126:505–512

    PubMed  Google Scholar 

  37. 37.

    Fujita MQ, Zhu B-L, Ishida K, Quan L, Oritani S, Maeda H (2002) Serum C-reactive protein levels in postmortem blood—an analysis with special reference to the cause of death and survival time. Forensic Sci Int 130:160–166

    CAS  PubMed  Google Scholar 

  38. 38.

    Astrup BS, Thomsen JL (2007) The routine use of C-reactive protein in forensic investigations. Forensic Sci Int 172:49–55

    CAS  PubMed  Google Scholar 

  39. 39.

    Maeda H, Zhu B-L, Bessho Y, Ishikawa T, Quan L, Michiue T, Zhao D, Li D-R, Komatsu A (2008) Postmortem serum nitrogen compounds and C-reactive protein levels with special regard to investigation of fatal hyperthermia. Forensic Sci Med Pathol 4:175–180

    CAS  PubMed  Google Scholar 

  40. 40.

    Uhlin-Hansen L (2001) C-reactive protein (CRP), a comparison of pre- and post-mortem blood levels. Forensic Sci Int 124:32–35

    CAS  PubMed  Google Scholar 

  41. 41.

    Palmiere C, Augsburger M (2014) Markers for sepsis diagnosis in the forensic setting. State of the art. Croat Med J 55:103–114

    CAS  PubMed  Google Scholar 

  42. 42.

    Schmidt S, Windgassen M, Nofer J-R, Pfeiffer H, Ribbecke S, Schmeling A (2015) Procalcitonin as a postmortem sepsis marker. A comparison of the validity of results obtained from blood serum, aqueous humour and cerebrospinal fluid. Int J Legal Med 129:117–123

    CAS  PubMed  Google Scholar 

  43. 43.

    Ramsthaler F, Kettner M, Mall G, Bratzke H (2008) The use of rapid diagnostic test of procalcitonin serum levels for the postmortem diagnosis of sepsis. Forensic Sci Int 178:139–145

    CAS  PubMed  Google Scholar 

  44. 44.

    Meisner M, Tschaikowsky K, Schnabel S, Schmidt J, Katalinic A, Schüttler J (1997) Procalcitonin - influence of temperature, storage, anticoagulation and arterial or venous asservation of blood samples on procalcitonin concentrations. Clin Chem Lab Med 35:597–602.

    CAS  Google Scholar 

  45. 45.

    Madea B, Musshoff F (2007) Post-mortem biochemistry. Forensic Sci Int 165:165–171

    CAS  PubMed  Google Scholar 

  46. 46.

    Flanagan RJ (2017) Post-mortem biochemistry and toxicology. Arab J For Sci For Med 1:540–552

    Google Scholar 

  47. 47.

    Hanrieder J, Wetterhall M, Enblad P, Hillered L, Bergquist J (2009) Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Methods 177:469–478

    CAS  PubMed  Google Scholar 

Download references


The authors would like to thank Ms. Aqeeda Singh (Department of Anatomy, University of Otago, New Zealand) for proofreading the paper as a native speaker and Prof. Ralph Burkhardt (Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany) for his kind support in aliquot checking of serum interference indices.

Author information



Corresponding author

Correspondence to Benjamin Ondruschka.

Ethics declarations

All experiments were conducted in accordance with the human and ethical principles of the University of Leipzig (no. 388/15-ek).

Conflict of interest

BO has received reimbursement of travel costs from Randox Laboratories. The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ondruschka, B., Woydt, L., Bernhard, M. et al. Post-mortem in situ stability of serum markers of cerebral damage and acute phase response. Int J Legal Med 133, 871–881 (2019).

Download citation


  • Acute phase response
  • Intra-individual stability
  • Post-mortem biochemistry
  • Serum
  • Thanatochemistry
  • Traumatic brain injury