Skip to main content

Advertisement

Log in

Mutability analysis towards 21 STR loci included in the AGCU 21 + 1 kit in Chinese Han population

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

To further illustrate the mutation traits of 21 autosomal STR loci involved in the newly developed AGCU 21 + 1 kit, randomly selected 485 trios were focused on. We have previously confirmed the biological father-mother-child relationships of these trios. Then matters of mutation rates, steps, and origins of the 21 STR loci were statically analyzed. Results showed 35 mutation events occurred at 16 STR loci of the panel during 20,370 meiosis, and the locus-specific mutation rates ranged from 0.000 to 1.134% (D3S4529), with an overall mutation rate of 1.72 × 10−3 (95%CI, 1.20–2.39 × 10−3). Mutation origins exhibited slight discrepancy between male and female germlines, 18 of the 35 mutation events were verified to be contributed by fathers and 13 by mothers, with origins of the remaining 4 events hardly to be assigned. Furthermore, 77.14% of the mutations were one-step mutation. Currently, portraits on mutability of the STR loci involved in the AGCU 21 + 1 panel were barely reported. In view of this, we conclude our data will enrich the mutation information of the 21 STR loci and provide valuable suggestions in calculating likelihood ratios for mutation-involved parental testing cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Mullikin JC, Hunt SE, Cole CG, Mortimore BJ, Rice CM, Burton J, Matthews LH, Pavitt R, Plumb RW, Sims SK, Ainscough RM, Attwood J, Bailey JM, Barlow K, Bruskiewich RM, Butcher PN, Carter NP, Chen Y, Clee CM, Coggill PC, Davies J, Davies RM, Dawson E, Francis MD, Joy AA, Lamble RG, Langford CF, Macarthy J, Mall V, Moreland A, Overton-Larty EK, Ross MT, Smith LC, Steward CA, Sulston JE, Tinsley EJ, Turney KJ, Willey DL, Wilson GD, McMurray AA, Dunham I, Rogers J, Bentley DR (2000) An SNP map of human chromosome 22. Nature 407(6803):516–520. https://doi.org/10.1038/35035089

    Article  PubMed  CAS  Google Scholar 

  2. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16(9):1182–1190. https://doi.org/10.1101/gr.4565806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

    Article  PubMed  CAS  Google Scholar 

  4. Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251. https://doi.org/10.1146/annurev.immunol.20.092501.134942

    Article  PubMed  CAS  Google Scholar 

  5. Kidd KK, Pakstis AJ, Speed WC, Lagace R, Chang J, Wootton S, Haigh E, Kidd JR (2014) Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci Int Genet 12:215–224. https://doi.org/10.1016/j.fsigen.2014.06.014

    Article  PubMed  CAS  Google Scholar 

  6. Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62(6):1408–1415. https://doi.org/10.1086/301869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dauber E-M, Kratzer A, Neuhuber F, Parson W, Klintschar M, Bär W, Mayr WR (2012) Germline mutations of STR-alleles include multi-step mutations as defined by sequencing of repeat and flanking regions. Forensic Sci Int Genet 6(3):381–386. https://doi.org/10.1016/j.fsigen.2011.07.015

    Article  PubMed  CAS  Google Scholar 

  8. Sun H, Liu S, Zhang Y, Whittle MR (2014) Comparison of southern Chinese Han and Brazilian Caucasian mutation rates at autosomal short tandem repeat loci used in human forensic genetics. Int J Legal Med 128(1):1–9. https://doi.org/10.1007/s00414-013-0847-2

    Article  PubMed  Google Scholar 

  9. Qian XQ, Yin CY, Ji Q, Li K, Fan HT, Yu YF, Bu FL, Hu LL, Wang JW, Mu HF, Haigh S, Chen F (2015) Mutation rate analysis at 19 autosomal microsatellites. Electrophoresis 36(14):1633–1639. https://doi.org/10.1002/elps.201400558

    Article  PubMed  CAS  Google Scholar 

  10. Vieira TC, Duarte Gigonzac MA, Goulart Rodovalho R, Morais Cavalcanti L, Bernardes Minasi L, Melo Rodrigues F, da Cruz AD (2017) Mutation rates in 21 autosomal short tandem repeat loci in a population from Goias, Brazil. Electrophoresis 38(21):2791–2794. https://doi.org/10.1002/elps.201700192

    Article  PubMed  CAS  Google Scholar 

  11. Jin B, Su Q, Luo H, Li Y, Wu J, Yan J, Hou Y, Liang W, Zhang L (2016) Mutational analysis of 33 autosomal short tandem repeat (STR) loci in southwest Chinese Han population based on trio parentage testing. Forensic Sci Int Genet 23:86–90. https://doi.org/10.1016/j.fsigen.2016.03.009

    Article  PubMed  CAS  Google Scholar 

  12. Hares DR (2015) Selection and implementation of expanded CODIS core loci in the United States. Forensic Sci Int Genet 17:33–34. https://doi.org/10.1016/j.fsigen.2015.03.006

    Article  PubMed  CAS  Google Scholar 

  13. Zhang YD, Tang XL, Meng HT, Wang HD, Jin R, Yang CH, Yan JW, Yang G, Liu WJ, Shen CM, Zhu BF (2015) Genetic variability and phylogenetic analysis of Han population from Guanzhong region of China based on 21 non-CODIS STR loci. Sci Rep 5:8872. https://doi.org/10.1038/srep08872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang HD, Liao SX, Shen CM, Liu WJ, Yuan GL, Zhang YD, Yang G, Yan JW, Qin HX, Xie T (2013) Allelic diversity distributions of 21 new autosomal short tandem repeat loci in Chinese Ningxia Han population. Forensic Sci Int Genet 7(3):e78–e79. https://doi.org/10.1016/j.fsigen.2012.11.012

    Article  PubMed  CAS  Google Scholar 

  15. Shen CM, Wang HD, Liu WJ, Fan SL, Yang G, Qin HX, Xie T, Li SB, Yan JW, Zhu BF (2013) Allelic polymorphic investigation of 21 autosomal short tandem repeat loci in a Chinese Bai ethnic group. Leg Med (Tokyo) 15(2):109–113. https://doi.org/10.1016/j.legalmed.2012.08.012

    Article  CAS  Google Scholar 

  16. Teng Y, Zhang FX, Shen CM, Wang F, Wang HD, Yan JW, Liu JL (2012) Genetic variation of new 21 autosomal short tandem repeat loci in a Chinese Salar ethnic group. Mol Biol Rep 39(2):1465–1470. https://doi.org/10.1007/s11033-011-0883-2

    Article  PubMed  CAS  Google Scholar 

  17. Zhu BF, Shen CM, Wang HD, Yang G, Yan JW, Qin HX, Guo JX, Huang JF, Jing H, Liu XS (2011) Genetic diversities of 21 non-CODIS autosomal STRs of a Chinese Tibetan ethnic minority group in Lhasa. Int J Legal Med 125(4):581–585. https://doi.org/10.1007/s00414-010-0519-4

    Article  PubMed  Google Scholar 

  18. Deng YJ, Mi Y, Shen CM, Wang HD, Liu WJ, Yan JW, Pu HW, Chen X, Zhu BF (2013) Polymorphic analysis of 21 new STR loci in Chinese Uigur group. Forensic Sci Int Genet 7(3):e97–e98. https://doi.org/10.1016/j.fsigen.2013.02.009

    Article  PubMed  CAS  Google Scholar 

  19. Yuan GL, Shen CM, Wang HD, Liu WJ, Yang G, Yan JW, Qin HX, Xie T, Ran H, Yuan J, Liu Z, Zhu B (2012) Genetic data provided by 21 autosomal STR loci from Chinese Tujia ethnic group. Mol Biol Rep 39(12):10265–10271. https://doi.org/10.1007/s11033-012-1903-6

    Article  PubMed  CAS  Google Scholar 

  20. Wang HD, Shen CM, Liu WJ, Zhang YD, Yang G, Yan JW, Qin HX, Zhu BF (2013) Allelic frequency distributions of 21 non-combined DNA index system STR loci in a Russian ethnic minority group from Inner Mongolia, China. J Zhejiang Univ Sci B 14(6):533–540. https://doi.org/10.1631/jzus.B1200262

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yuan JY, Wang XY, Shen CM, Liu WJ, Yan JW, Wang HD, Pu HW, Wang YL, Yang G, Zhang YD, Meng HT, Jing H, Zhu BF (2014) Genetic profile characterization and population study of 21 autosomal STR in Chinese Kazak ethnic minority group. Electrophoresis 35(4):503–510. https://doi.org/10.1002/elps.201300398

    Article  PubMed  CAS  Google Scholar 

  22. Walsh PS, Metzger DA, Higushi R (2013) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10(4): 506–13 (April 1991). Biotechniques 54 (3):134–139

  23. Davis C, Ge J, King J, Malik N, Weirich V, Eisenberg AJ, Budowle B (2012) Variants observed for STR locus SE33: a concordance study. Forensic Sci Int Genet 6(4):494–497. https://doi.org/10.1016/j.fsigen.2011.12.002

    Article  PubMed  CAS  Google Scholar 

  24. Shao C, Lin M, Zhou Z, Zhou Y, Shen Y, Xue A, Zhou H, Tang Q, Xie J (2016) Mutation analysis of 19 autosomal short tandem repeats in Chinese Han population from shanghai. Int J Legal Med 130(6):1439–1444. https://doi.org/10.1007/s00414-016-1427-z

    Article  PubMed  Google Scholar 

  25. Amos W, Flint J, Xu X (2008) Heterozygosity increases microsatellite mutation rate, linking it to demographic history. BMC Genet 9:72. https://doi.org/10.1186/1471-2156-9-72

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ying D, Nan X, Weijian Y, Mei C (2015) Application of 21 non-CODIS STR loci in duos parentage analysis. CHIN J FORENSIC MED 30(6):604–606

    Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (NSFC, No. 81525015), GDUPS (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Q., Wang, H., Shen, C. et al. Mutability analysis towards 21 STR loci included in the AGCU 21 + 1 kit in Chinese Han population. Int J Legal Med 132, 1287–1291 (2018). https://doi.org/10.1007/s00414-018-1873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-018-1873-x

Keywords

Navigation