A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development

  • Markus Auf der Mauer
  • Dennis Säring
  • Ben Stanczus
  • Jochen Herrmann
  • Michael Groth
  • Eilin Jopp-van Well
Original Article

Abstract

Age estimation is an actual topic in the area of forensic medicine with a special focus on the age limits of 16 and 18 years. Current research on this topic relies on retrospective data of inhomogeneous populations relating to sex, age range, and socioeconomic status. In this work, we present a 2-year follow-up study for the evaluation of an age estimation method on a prospective magnetic resonance imaging (MRI) knee data collective of a homogeneous population. The study includes 40 male subjects from northern Germany aged 14 to 21 years. Three MRI examinations were evenly acquired within 2 years for each subject. As a first evaluation, a three-stage system was used to assess the ossification status of the knee (I:“open”, II:“partially ossified”, III:“fully ossified”). Three raters assessed the growth plate of the distal femur, proximal tibia, and proximal fibula based on central 2D slices. A good inter-rater agreement was attained (κ = 0.84). All subjects younger than 18 years were rated as stage I and had a cumulative knee score (SKJ) ≤ 5. Based on the follow-up datasets, new parameters quantifying the intra-individual ossification process were calculated. The results of this follow-up analysis show a different start, end, and speed of each growth plate’s maturation as well as an ossification peak for individuals at the age of 16. The generated MRI database provides new insights into the ossification process over time and serves as a basis for further evaluations of age estimation methods.

Keywords

Age estimation Follow-up study MRI Knee Growth plates Ossification 

Notes

Compliance with Ethical Standards

An ethical approval for this study was granted by the Ethics Committee of the Medical Association Hamburg (PV4527). The director of this study had full control of the data and the material submitted for publication.

Informed Consent

Written informed consent was obtained from all subjects in this study.

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Baumann P, Widek T, Merkens H, Boldt J, Petrovic A, Urschler M, Kirnbauer B, Jakse N, Scheurer E (2015) Dental age estimation of living persons: comparison of MRI with OPG. Forensic Sci Int 253:76–80.  https://doi.org/10.1016/j.forsciint.2015.06.001. http://linkinghub.elsevier.com/retrieve/pii/S0379073815002364 CrossRefPubMedGoogle Scholar
  2. 2.
  3. 3.
    Cameriere R, Cingolani M, Giuliodori A, De Luca S, Ferrante L (2012) Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age. Int J Legal Med 126(6):889–899.  https://doi.org/10.1007/s00414-012-0754-y CrossRefPubMedGoogle Scholar
  4. 4.
    Craig JG, Cody DD, van Holsbeeck M (2004) The distal femoral and proximal tibial growth plates: MR imaging, three-dimensional modeling and estimation of area and volume. Skelet Radiol 33(6):337–344.  https://doi.org/10.1007/s00256-003-0734-x CrossRefGoogle Scholar
  5. 5.
    De Tobel J, Hillewig E, Bogaert S, Deblaere K, Verstraete K (2017a) Magnetic resonance imaging of third molars: developing a protocol suitable for forensic age estimation. Ann Hum Biol 44(2):130–139.  https://doi.org/10.1080/03014460.2016.1202321 CrossRefPubMedGoogle Scholar
  6. 6.
    De Tobel J, Phlypo I, Fieuws S, Politis C, Verstraete K, Thevissen P (2017b) Forensic age estimation based on development of third molars: a staging technique for magnetic resonance imaging. J Forensic Odontostomatol 35(2):125–145Google Scholar
  7. 7.
    De Tobel J, Radesh P, Vandermeulen D, Thevissen P (2017c) An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol 2 (35):49–60Google Scholar
  8. 8.
    Dedouit F, Auriol J, Rousseau H, Rougė D, Crubėzy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217(1-3):232.  https://doi.org/10.1016/j.forsciint.2011.11.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45 (2):211–227. http://www.jstor.org/stable/41459864 PubMedGoogle Scholar
  10. 10.
    Dvorak J, George J, Junge A, Hodler J (2006) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41(1):45–52.  https://doi.org/10.1136/bjsm.2006.031021 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eikvil L, Kvaal S, Teigland A, Haugen M, Grøgaard J (2012) Age estimation in youths and young adults. A summary of the needs for methodological research and development. Norwegian Computing Center (December 2012):26. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.374.8609&rep=rep1&type=pdf, http://publications.nr.no/directdownload/publications.nr.no/1355995517/Age_estimation_methods-Eikvil.pdf
  12. 12.
    Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Bilgili MG (2015) Magnetic resonance imaging of distal tibia and calcaneus for forensic age estimation in living individuals. Int J Legal Med 129(4):825–831.  https://doi.org/10.1007/s00414-015-1187-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Ekizoglu O, Hocaoglu E, Can IO, Inci E, Aksoy S, Sayin I (2016a) Spheno-occipital synchondrosis fusion degree as a method to estimate age: a preliminary, magnetic resonance imaging study. Aust J Forensic Sci 48(2):159–170.  https://doi.org/10.1080/00450618.2015.1042047 CrossRefGoogle Scholar
  14. 14.
    Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016b) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: use of a T2-weighted fast spin-echo technique. Forensic Sci Int 260:102.e1–102.e7.  https://doi.org/10.1016/j.forsciint.2015.12.006. http://linkinghub.elsevier.com/retrieve/pii/S0379073815004958 CrossRefGoogle Scholar
  15. 15.
    Fan F, Zhang K, Peng Z, hui Cui Jh, Hu N, hua Deng Zh (2016) Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Science International 268(September 2015):145–150.  https://doi.org/10.1016/j.forsciint.2016.10.002. http://linkinghub.elsevier.com/retrieve/pii/S037907381630439X
  16. 16.
    Galić I, Mihanović F, Giuliodori A, Conforti F, Cingolani M, Cameriere R (2016) Accuracy of scoring of the epiphyses at the knee joint (SKJ) for assessing legal adult age of 18 years. Int J Legal Med 130 (4):1129–1142.  https://doi.org/10.1007/s00414-016-1348-x CrossRefPubMedGoogle Scholar
  17. 17.
    Geserick G, Schmeling A (2011) Qualitätssicherung der Forensischen Altersdiagnostik bei Lebenden Personen. Rechtsmedizin 21(1):22–25.  https://doi.org/10.1007/s00194-010-0704-2 CrossRefGoogle Scholar
  18. 18.
    Gohlke B, Wölfle J (2009) Growth and puberty in German children. Dtsch Arztebl Int 106(23):377–382.  https://doi.org/10.3238/arztebl.2009.0377. http://www.aerzteblatt.de/int/article.asp?id=64943 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. The American J Med Sci 238(3):393.  https://doi.org/10.1097/00000441-195909000-00030. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000441-195909000-00030 CrossRefGoogle Scholar
  20. 20.
    Guo Y, Olze A, Ottow C, Schmidt S, Schulz R, Heindel W, Pfeiffer H, Vieth V, Schmeling A (2015) Dental age estimation in living individuals using 3.0 T MRI of lower third molars. Int J Legal Med 129 (6):1265–1270.  https://doi.org/10.1007/s00414-015-1238-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Hermanussen M (ed) (2013) Auxology: studying human growth and development. Schweizerbart Science Publ, StuttgartGoogle Scholar
  22. 22.
    Hermanussen M, Lieberman LS, Janewa VS, Scheffler C, Ghosh A, Bogin B, Godina E, Kaczmarek M, El-Shabrawi M, Salama EE, Ru̇hli FJ, Staub K, Woitek U, Blaha P, Assmann C, van Buuren S, Lehmann A, Satake T, Thodberg HH, Jopp E, Kirchengast S, Tutkuviene J, McIntyre MH, Wittwer-Backofen U, Boldsen JL, Martin DD, Meier J (2012) Diversity in auxology: between theory and practice. Proceedings of the 18th Aschauer Soiree, 13th November 2010. Anthropologischer Anzeiger; Bericht uber die biologisch-anthropologische Literatur 69(2):159–174CrossRefPubMedGoogle Scholar
  23. 23.
    Hillewig E, De Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K (2010) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21:757–767CrossRefPubMedGoogle Scholar
  24. 24.
    Hillewig E, Degroote J, Van Der Paelt T, Visscher A, Vandemaele P, Lutin B, D’Hooghe L, Vandriessche V, Piette M, Verstraete K, D’Hooghe L, Vandriessche V, Piette M, Verstraete K (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127(3):677–689.  https://doi.org/10.1007/s00414-012-0798-z CrossRefPubMedGoogle Scholar
  25. 25.
    Jopp E, Schröder I, Maas R, Adam G, Püschel K (2010) Proximale Tibiaepiphyse im Magnetresonanztomogramm: Neue möglichkeit zur Altersbestimmung bei Lebenden?. Rechtsmedizin 20(6):464–468.  https://doi.org/10.1007/s00194-010-0705-1 CrossRefGoogle Scholar
  26. 26.
    Jopp E, Schröder I, Püschel K, Hermanussen M (2012) Longitudinal shrinkage in lower legs: negative growth in healthy late-adolescent males. Anthropologischer Anzeiger 69(1):107–115.  https://doi.org/10.1127/0003-5548/2011/0115. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=medl&NEWS=N&AN=22338798, http://openurl.ingenta.com/content/xref?genre=article&issn=0003-5548&volume=69&issue=1&spage=107 CrossRefGoogle Scholar
  27. 27.
    Knußmann R (1992) Somatometrie. In: Martin R, Knußmann R (eds) Anthropologie, Gustav Fischer Verlag, pp 232–309Google Scholar
  28. 28.
    Köhler S, Schmelzte R, Loitz C, Püschel K (1994) Die Entwicklung des Weisheitszahnes als Kriterium der Lebensaltersbestimmung. Annals of anatomy - Anatomischer Anzeiger 176 (4):339–345.  https://doi.org/10.1016/S0940-9602(11)80513-3. http://linkinghub.elsevier.com/retrieve/pii/S0940960211805133 CrossRefPubMedGoogle Scholar
  29. 29.
    Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014a) Forensic age estimation in living individuals using 3.0T MRI of the distal femur. Int J Legal Med 128(3):509–514.  https://doi.org/10.1007/s00414-014-0967-3 CrossRefPubMedGoogle Scholar
  30. 30.
    Krämer JA, Schmidt S, Jürgens KU, Lentschig M, Schmeling A, Vieth V (2014b) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10(3):306–313.  https://doi.org/10.1007/s12024-014-9559-2 CrossRefPubMedGoogle Scholar
  31. 31.
    Kubilay S (2016) Ablauf des deutschen Asylverfahrens. Tech. rep., Bundesamt für Migration und Flüchtlinge (BAMF). https://www.bamf.de/SharedDocs/Anlagen/DE/Publikationen/Broschueren/das-deutsche-asylverfahren.html
  32. 32.
  33. 33.
    Lockemann U, Fuhrmann A, Püschel K, Schmeling A, Geserick G (2004) Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft fu̇r Rechtsmedizin: Empfehlungen fu̇r die Altersdiagnostik bei Jugendlichen und jungen Erwachsenen außerhalb des Strafverfahrens. Rechtsmedizin 14(2):123–126.  https://doi.org/10.1007/s00194-004-0243-9 CrossRefGoogle Scholar
  34. 34.
    Mansour H, Fuhrmann A, Paradowski I, Jopp-van Well E, Püschel K (2017) The role of forensic medicine and forensic dentistry in estimating the chronological age of living individuals in Hamburg, Germany. Int J Legal Med 131(2):593–601.  https://doi.org/10.1007/s00414-016-1517-y CrossRefPubMedGoogle Scholar
  35. 35.
    Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44 (235):291–303CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45 (239):13–23CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Martin R, Saller KF (1957) Lehrbuch der Anthropologie: in systematischer Darstellung mit besonderer berücksichtigung der anthropologischen Methoden: für Studierende Ärzte und Forschungsreisende. Gustav Fischer Verlag, StuttgartGoogle Scholar
  38. 38.
    Mincer HH, Harris EF, Berryman HE (1993) The A.B.F.O. study of third molar development and its use as an estimator of chronological age. J Forensic Sci 38(2):379–390.  https://doi.org/10.1520/JFS13418J. http://www.astm.org/doiLink.cgi?JFS13418J CrossRefPubMedGoogle Scholar
  39. 39.
    Mora S, Boechat MI, Pietka E, Huang HK, Gilsanz V (2001) Skeletal age determinations in children of european and african descent: applicability of the greulich and pyle standards. Pediatr Res 50(5):624–628.  https://doi.org/10.1203/00006450-200111000-00015 CrossRefPubMedGoogle Scholar
  40. 40.
    Müller K, Fuhrmann A, Püschel K (2011) Altersschätzung bei einreisenden jungen ausländern. Rechtsmedizin 21(1):33–38.  https://doi.org/10.1007/s00194-010-0710-4 CrossRefGoogle Scholar
  41. 41.
    Ontell FK, Ivanovic M, Ablin DS, Barlow TW (1996) Bone age in children of diverse ethnicity. Am J Roentgenol 167(6):1395–1398.  https://doi.org/10.2214/ajr.167.6.8956565 CrossRefGoogle Scholar
  42. 42.
    Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone t1 TSE sequence. Eur Radiol:1–8.  https://doi.org/10.1007/s00330-017-4880-2
  43. 43.
    Quirmbach F, Ramsthaler F, Verhoff MA (2009) Evaluation of the ossification of the medial clavicular epiphysis with a digital ultrasonic system to determine the age threshold of 21 years. Int J Legal Med 123(3):241–245.  https://doi.org/10.1007/s00414-009-0335-x CrossRefPubMedGoogle Scholar
  44. 44.
    R Core Team (2013). R: a language and environment for statistical computing. http://www.r-project.org/
  45. 45.
    Reisinger W, Kleiber M (2006) Forensische Altersdiagnostik im Strafverfahren. In: Thiemann HH, Nitz I, Schmeling A (eds) Röntgenatlas der normalen hand im kindesalter. 3rd edn.  https://doi.org/10.1055/b-0036-136556. Georg Thieme Verlag, Stuttgart
  46. 46.
    Rösing FW, Kaatsch H, Schmeling A (2002) Jugendliche Straftäter und Asylsuchende: Ethische und humanbiologische Aspekte der Altersdiagnose. In: Kinderwelten: Anthropologie - Geschichte - Kulturvergleich, Böhlau Verlag Köln Weimar Wien, pp 447–457. https://books.google.de/books?id=gmg3nPDztpIC&dq=Ethische+und+humanbiologische+Aspekte+der+Altersdiagnose&lr=&source=gbs_navlinks_s
  47. 47.
    Saint-Martin P, Rérolle C, Dedouit F, Bouilleau L, Rousseau H, Rougé D, Telmon N (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127 (5):1023–1030.  https://doi.org/10.1007/s00414-013-0844-5 CrossRefPubMedGoogle Scholar
  48. 48.
    Saint-Martin P, Rérolle C, Dedouit F, Rousseau H, Rougé D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis — a preliminary study focusing on the 18-year threshold. Int J Legal Med 128(4):675–683.  https://doi.org/10.1007/s00414-014-0987-z CrossRefPubMedGoogle Scholar
  49. 49.
    Saint-Martin P, Rérolle C, Pucheux J, Dedouit F, Telmon N (2015) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med 129(3):619–620.  https://doi.org/10.1007/s00414-014-1020-2 CrossRefPubMedGoogle Scholar
  50. 50.
    Säring D, Auf der Mauer M, Jopp E (2014) Klassifikation des Verschlussgrades der Epiphyse der proximalen Tibia zur Altersbestimmung. In: Informatik aktuell. Springer, Berlin, pp 60–65.  https://doi.org/10.1007/978-3-642-54111-7_16
  51. 51.
    Schmeling A (2011) Forensische Altersdiagnostik bei lebenden Jugendlichen und jungen Erwachsenen. Rechtsmedizin 21(2):151–162.  https://doi.org/10.1007/s00194-011-0741-5 CrossRefGoogle Scholar
  52. 52.
    Schmeling A, Reisinger W, Loreck D, Vendura K, Markus W, Geserick G (2000) Effects of ethnicity on skeletal maturation: consequences for forensic age estimations. Int J Legal Med 113(5):253–258CrossRefPubMedGoogle Scholar
  53. 53.
    Schmeling A, Kaatsch H, Marre B, Reisinger W, Riepert T, Ritz-Timme S, Rȯsing FW, Rȯtzscher K, Geserick G (2001) Empfehlungen für die Altersdiagnostik bei Lebenden im Strafverfahren. Rechtsmedizin 11(1):1–3.  https://doi.org/10.1007/s001940000082 CrossRefGoogle Scholar
  54. 54.
    Schmeling A, Olze A, Reisinger W, König M, Geserick G (2003) Statistical analysis and verification of forensic age estimation of living persons in the Institute of Legal Medicine of the Berlin University Hospital Charité. Legal Med 5:S367– S371.  https://doi.org/10.1016/S1344-6223(02)00134-7. http://linkinghub.elsevier.com/retrieve/pii/S1344622302001347 CrossRefPubMedGoogle Scholar
  55. 55.
    Schmeling A, Schulz R, Danner B, Rȯsing FW (2006) The impact of economic progress and modernization in medicine on the ossification of hand and wrist. Int J Legal Med 120(2):121–126.  https://doi.org/10.1007/s00414-005-0007-4 CrossRefPubMedGoogle Scholar
  56. 56.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Riepert T, Ritz-Timme S, Rȯsing FW, Rȯtzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460.  https://doi.org/10.1007/s00414-008-0254-2 CrossRefPubMedGoogle Scholar
  57. 57.
    Schmidt S, Koch B, Schulz R, Reisinger W, Schmeling A (2007a) Comparative analysis of the applicability of the skeletal age determination methods of Greulich-Pyle and Thiemann-Nitz for forensic age estimation in living subjects. Int J Legal Med 121(4):293–296.  https://doi.org/10.1007/s00414-007-0165-7 CrossRefPubMedGoogle Scholar
  58. 58.
    Schmidt S, Mu̇hler M, Schmeling A, Reisinger W, Schulz R (2007b) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121:321–324CrossRefPubMedGoogle Scholar
  59. 59.
    Schmidt S, Baumann U, Schulz R, Reisinger W, Schmeling A (2008) Study of age dependence of epiphyseal ossification of the hand skeleton. Int J Legal Med 122(1):51–54.  https://doi.org/10.1007/s00414-007-0209-z CrossRefPubMedGoogle Scholar
  60. 60.
    Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013a) Age dependence of epiphyseal ossification of the distal radius in ultrasound diagnostics. Int J Legal Med 127 (4):831–838.  https://doi.org/10.1007/s00414-013-0871-2 CrossRefPubMedGoogle Scholar
  61. 61.
    Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013b) Sonographic examination of the apophysis of the iliac crest for forensic age estimation in living persons. Sci. Justice 53(4):395–401.  https://doi.org/10.1016/j.scijus.2013.05.004. http://linkinghub.elsevier.com/retrieve/pii/S1355030613000567 CrossRefPubMedGoogle Scholar
  62. 62.
    Schmidt S, Vieth V, Timme M, Dvorak J, Schmeling A (2015) Examination of ossification of the distal radial epiphysis using magnetic resonance imaging. New insights for age estimation in young footballers in FIFA tournaments. Sci Justice 55(2):139–144.  https://doi.org/10.1016/j.scijus.2014.12.003. http://linkinghub.elsevier.com/retrieve/pii/S1355030614001683 CrossRefPubMedGoogle Scholar
  63. 63.
    Schulz R, Mühler M, Reisinger W, Schmidt S, Schmeling A (2008) Radiographic staging of ossification of the medial clavicular epiphysis. Int J Legal Med 122(1):55–58.  https://doi.org/10.1007/s00414-007-0210-6 CrossRefPubMedGoogle Scholar
  64. 64.
    Schulz R, Schiborr M, Pfeiffer H, Schmidt S, Schmeling A (2014) Forensic age estimation in living subjects based on ultrasound examination of the ossification of the olecranon. J Forensic Legal Med 22:68–72.  https://doi.org/10.1016/j.jflm.2013.12.004. http://linkinghub.elsevier.com/retrieve/pii/S1752928X1300320X CrossRefGoogle Scholar
  65. 65.
    Serin J, Rérolle C, Pucheux J, Dedouit F, Telmon N, Savall F, Saint-Martin P (2016) Contribution of magnetic resonance imaging of the wrist and hand to forensic age assessment. Int J Legal Med 130 (4):1121–1128.  https://doi.org/10.1007/s00414-016-1362-z  https://doi.org/10.1007/s00414-016-1362-z CrossRefPubMedGoogle Scholar
  66. 66.
    Serinelli S, Panebianco V, Martino M, Battisti S, Rodacki K, Marinelli E, Zaccagna F, Semelka RC, Tomei E (2015) Accuracy of MRI skeletal age estimation for subjects 12–19. Potential use for subjects of unknown age. Int J Legal Med 129(3):609–617.  https://doi.org/10.1007/s00414-015-1161-y CrossRefPubMedGoogle Scholar
  67. 67.
    Stern D, Urschler M (2016) From individual hand bone age estimates to fully automated age estimation via learning-based information fusion. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE, pp 150–154.  https://doi.org/10.1109/ISBI.2016.7493232. http://ieeexplore.ieee.org/document/7493232/
  68. 68.
    Stern D, Ebner T, Bischof H, Grassegger S, Ehammer T, Urschler M (2014) Fully automatic bone age estimation from left hand MR images. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014 17(Pt 2):220–227.  https://doi.org/10.1007/978-3-319-10470-6_28 Google Scholar
  69. 69.
    Štern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: Wang Q, Shi Y, Suk HI, Suzuki K (eds) Machine learning in medical imaging, Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-67389-9_8, pp 61–69
  70. 70.
    Tanner JM (1962) Growth at adolescence: with a general consideration of the effects of hereditary and environmental factors upon growth and maturation from birth to maturity. Blackwell Scientific Publications, Oxford. https://books.google.de/books?id=h8sJAQAAMAAJ Google Scholar
  71. 71.
    Tanner JM, Whitehouse R, Cameron N, Marshall WA, Healy MJR, Goldstein H (1983) Assessment of skeletal maturity and prediction of adult height (TW2 method). Academic Press 22:37Google Scholar
  72. 72.
    Terada Y, Kono S, Tamada D, Uchiumi T, Kose K, Miyagi R, Yamabe E, Yoshioka H (2013) Skeletal age assessment in children using an open compact MRI system. Magn Reson Med 69(6):1697–1702.  https://doi.org/10.1002/mrm.24439 CrossRefPubMedGoogle Scholar
  73. 73.
    Timme M, Ottow C, Schulz R, Pfeiffer H, Heindel W, Vieth V, Schmeling A, Schmidt S (2017) Magnetic resonance imaging of the distal radial epiphysis: a new criterion of maturity for determining whether the age of 18 has been completed?. Int J Legal Med 131(2):579–584.  https://doi.org/10.1007/s00414-016-1502-5 CrossRefPubMedGoogle Scholar
  74. 74.
    Tomei E, Sartori A, Nissman D, Al Ansari N, Battisti S, Rubini A, Stagnitti A, Martino M, Marini M, Barbato E, Semelka RC (2014) Value of MRI of the hand and the wrist in evaluation of bone age: preliminary results. J Magn Reson Imaging 39(5):1198–1205.  https://doi.org/10.1002/jmri.24286 CrossRefPubMedGoogle Scholar
  75. 75.
    Urschler M, Grassegger S, Štern D (2015) What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents. Ann Hum Biol 42 (4):358–367.  https://doi.org/10.3109/03014460.2015.1043945 CrossRefPubMedGoogle Scholar
  76. 76.
    Vieth V, Kellinghaus M, Schulz R, Pfeiffer H, Schmeling A (2010) Beurteilung des Ossifikationsstadiums der medialen Klavikulaepiphysenfuge. Rechtsmedizin 20(6):483–488.  https://doi.org/10.1007/s00194-010-0709-x CrossRefGoogle Scholar
  77. 77.
    Vucic S, de Vries E, Eilers PH, Willemsen SP, Kuijpers MA, Prahl-Andersen B, Jaddoe VW, Hofman A, Wolvius EB, Ongkosuwito EM (2014) Secular trend of dental development in Dutch children. Am J Phys Anthropol 155(1):91–98.  https://doi.org/10.1002/ajpa.22556 CrossRefPubMedGoogle Scholar
  78. 78.
    Wittschieber D, Ottow C, Schulz R, Püschel K, Bajanowski T, Ramsthaler F, Pfeiffer H, Vieth V, Schmidt S, Schmeling A (2016) Forensic age diagnostics using projection radiography of the clavicle: a prospective multi-center validation study. Int J Legal Med 130(1):213–219.  https://doi.org/10.1007/s00414-015-1285-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical and Industrial Image ProcessingUniversity of Applied Sciences of WedelWedelGermany
  2. 2.Pediatric Radiology DepartmentUniversity Medical Center Hamburg-Eppendorf (UKE)HamburgGermany
  3. 3.Department of Legal MedicineUniversity Medical Center Hamburg-Eppendorf (UKE)HamburgGermany

Personalised recommendations