Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 4, pp 1097–1102 | Cite as

Genetic variation and forensic characterization of highland Tibetan ethnicity reveled by autosomal STR markers

  • Guanglin He
  • Zheng Wang
  • Yongdong Su
  • Xing Zou
  • Mengge Wang
  • Jing Liu
  • Yiping Hou
Population Data

Abstract

Understanding the origin and genetic background of Chinese high-altitude Tibetans play a pivotal role in medical genetics, archeology, anthropology, and forensics. In this study, to investigate the forensic characterization and genetic diversity of Chinese Tibetan, allele frequencies and corresponding forensic statistical parameters of 15 autosomal STRs included in the AmpFℓSTR® Sinofiler™ kit were obtained from 1220 Tibetan individuals residing in Lhasa country, Tibet Autonomous Region. We identified 191 alleles with corresponding allele frequencies varied from 0.0004 to 0.3984. The combined probability of discrimination and the combined probability of exclusion are 0.9999999999999999997 and 0.9999996, respectively. Our study provided the valuable dataset for forensic individual identification and parentage testing in the high-altitude Tibetan population. In addition, comprehensive population comparisons among 30 Chinese populations via PCA, AMOVA, MDS, and N-J tree demonstrated that the genetic components of Tibet Tibetan have received gene introgression from surrounding lowland populations (Such as Gansu Hui and Yunnan Bai) and Tibetan keeps the close genetic relationship with geographic neighboring populations.

Keywords

Highland Tibetan Short tandem repeats Genetic polymorphism Forensic genetics 

Notes

Acknowledgments

This work received the support of grants from the National Key R&D Program of China (2016YFC0800703) and the National Natural Science Foundation of China (81330073 and 81501635) and the Fundamental Research Funds for the Central Universities.

Authors’ contribution

G.H. and X.Z. wrote the manuscript; Y.S. collected the samples; G.H., X.Z., M.W., and J.L. conducted the experiment and assessed the results; Z.W. modified the manuscript; and Y.H. conceived the experiment. All authors have reviewed and considered the manuscript.

Compliance with ethical standards

Our study had been approved by the institutional review boards at the Sichuan University.

Competing interests

The authors declare that they have no competing interests.

Supplementary material

414_2017_1765_MOESM1_ESM.docx (174 kb)
Figure S1 (DOCX 173 kb)
414_2017_1765_MOESM2_ESM.docx (320 kb)
Figure S2 (DOCX 319 kb)
414_2017_1765_MOESM3_ESM.docx (93 kb)
Figure S3 (DOCX 93 kb)
414_2017_1765_MOESM4_ESM.docx (97 kb)
Figure S4 (DOCX 96 kb)
414_2017_1765_MOESM5_ESM.docx (268 kb)
Figure S5 (DOCX 267 kb)
414_2017_1765_MOESM6_ESM.xlsx (11 kb)
Table S1 (XLSX 10 kb)
414_2017_1765_MOESM7_ESM.xlsx (15 kb)
Table S2 (XLSX 15 kb)
414_2017_1765_MOESM8_ESM.xlsx (19 kb)
Table S3 (XLSX 18 kb)
414_2017_1765_MOESM9_ESM.xlsx (17 kb)
Table S4 (XLSX 17 kb)

References

  1. 1.
    Lu D, Lou H, Yuan K, Wang X, Wang Y, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng Q, Hu Y, Ding Q, Yang Y, Li S, Jin L, Guan Y, Su B, Kang L, Xu S (2016) Ancestral origins and genetic history of Tibetan highlanders. Am J Hum Genet 99(3):580–594.  https://doi.org/10.1016/j.ajhg.2016.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lorenzo FR, Huff C, Myllymaki M et al (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46(9):951–956.  https://doi.org/10.1038/ng.3067 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB (2015) Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Exp Physiol 100(11):1263–1268.  https://doi.org/10.1113/EP085035 CrossRefPubMedGoogle Scholar
  4. 4.
    Jeong C, Alkorta-Aranburu G, Basnyat B, Neupane M, Witonsky DB, Pritchard JK, Beall CM, di Rienzo A (2014) Admixture facilitates genetic adaptations to high altitude in Tibet. Nat Commun 5:3281.  https://doi.org/10.1038/ncomms4281 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Racimo F, Sankararaman S, Nielsen R, Huerta-Sanchez E (2015) Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16(6):359–371.  https://doi.org/10.1038/nrg3936 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huerta-Sanchez E, Jin X, Asan et al (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512(7513):194–197.  https://doi.org/10.1038/nature13408 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kayser M, de Knijff P (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Nat Rev Genet 12(3):179–192.  https://doi.org/10.1038/nrg2952 CrossRefPubMedGoogle Scholar
  8. 8.
    He G, Li Y, Zou X, Zhang Y, Li H, Wang M, Wu J (2017) X-chromosomal STR based genetic structure of Sichuan Tibetan minority ethnicity group and its relationships to various groups. Int J Legal Med.  https://doi.org/10.1007/s00414-017-1672-9
  9. 9.
    He G, Li Y, Wang Z, Liang W, Luo H, Liao M, Zhang J, Yan J, Li Y, Hou Y, Wu J (2017) Genetic diversity of 21 autosomal STR loci in the Han population from Sichuan province, Southwest China. Forensic Sci Int Genet 31:e33–e35.  https://doi.org/10.1016/j.fsigen.2017.07.006 CrossRefPubMedGoogle Scholar
  10. 10.
    He G, Wang Z, Wang M, Hou Y (2017) Genetic diversity and phylogenetic differentiation of southwestern Chinese Han: a comprehensive and comparative analysis on 21 non-CODIS STRs. Sci Rep 7(1):13730.  https://doi.org/10.1038/s41598-017-13190-w CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    He G, Chen P, Zou X et al (2017) Genetic polymorphism investigation of the Chinese Yi minority using PowerPlex(R) Y23 STR amplification system. Int J Legal Med 131(3):663–666.  https://doi.org/10.1007/s00414-017-1537-2 CrossRefPubMedGoogle Scholar
  12. 12.
    He G, Wang M, Liu J, Hou Y, Wang Z (2017) Forensic features and phylogenetic analyses of Sichuan Han population via 23 autosomal STR loci included in the Huaxia Platinum System. Int J Legal Med.  https://doi.org/10.1007/s00414-017-1679-2
  13. 13.
    Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  14. 14.
    Kovach WL (2007) MVSP—a MultiVariate statistical package for Windows, ver. 3.1. Kovach Computing Services, PentraethGoogle Scholar
  15. 15.
    Cummings MP (2004) PHYLIP (phylogeny inference package). Wiley, HobokenCrossRefGoogle Scholar
  16. 16.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  17. 17.
    He G, Li Y, Zou X et al (2017) Forensic characteristics and phylogenetic analyses of the Chinese Yi population via 19 X-chromosomal STR loci. Int J Legal Med 131(5):1243–1246.  https://doi.org/10.1007/s00414-017-1563-0 CrossRefPubMedGoogle Scholar
  18. 18.
    He G, Li Y, Zou X, Wang M, Chen P, Liao M, Wu J (2017) Genetic polymorphisms for 19 X-STR loci of Sichuan Han ethnicity and its comparison with Chinese populations. Leg Med (Tokyo) 29:6–12.  https://doi.org/10.1016/j.legalmed.2017.09.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guanglin He
    • 1
  • Zheng Wang
    • 1
  • Yongdong Su
    • 2
  • Xing Zou
    • 3
  • Mengge Wang
    • 1
  • Jing Liu
    • 1
  • Yiping Hou
    • 1
  1. 1.Institute of Forensic Medicine, West China School of Basic Science and Forensic MedicineSichuan UniversityChengduChina
  2. 2.Forensic Identification Center, Public Security Bureau of Tibet Autonomous RegionLhasaChina
  3. 3.Department of Forensic Medicine, College of Basic MedicineChongqing Medical UniversityChongqingChina

Personalised recommendations