Advertisement

International Journal of Legal Medicine

, Volume 132, Issue 4, pp 1139–1149 | Cite as

Reliability of the Greulich and Pyle method for chronological age estimation and age majority prediction in a Spanish sample

Original Article

Abstract

Estimating the forensic age of living individuals is ever more important in forensic practice, due to the ongoing increase of migratory flows, amongst other causes. Using the Greulich and Pyle method on a sample of 1150 individuals of the Spanish population (n = 560, 0–18 years for girls, and n = 590, 0–19 years for boys), the mean difference between the bone and chronological ages was obtained: 0.01 years (− 0.81, + 0.92) for girls and 0.33 years (− 1.15, + 0.34) for boys. For a same class of age and sex, the inherent variability was also evaluated: \( \overline{s}=0.84 \) (0.41–1.25) for girls and \( \overline{s}=0.80 \)years (0.36–1.76) for boys. To minimise systematic errors with regard to the reference population, adjustment factors are proposed for each age and sex. A sequential classification criterion based on decision trees is postulated to improve reliability in the prediction of maturity. Implementation of the decision criterion in three categories enables the doubtful individuals to be separated into the category of “undetermined” and to satisfactorily classify in the categories of “mature” and “under age”: 0.96 (0.86–0.99) specificity; 1.00 (0.92–1.00) specificity; and 1.00 (0.92–1.00) predictive value.

Keywords

Bone age Greulich and Pyle method Decision tree Spanish sample 

Notes

Acknowledgments

We would like to thank, for the access to the radiographic material, to Drs. A. Muntaner and M.T. Maristany of the Dept. of Image for the Diagnosis of the Hospital San Joan de Déu de Barcelona and to Dr. J.M. Bantulà del Servei de Diagnòstic per la Imatge (SDPI) Pura Fernàndez of L’Hospitalet de Llobregat (Barcelona). This work was supported in part by research project 2014 SGR 464 (GRBIO) of the Departament d’Economia i Coneixement, Generalitat de Catalunya.

Compliance with ethical standards

All the procedures and studies have been carried out in accordance with the ethical standards established by the Ethical Committees of Clinical Research (Hospital Sant Joan de Deu: ECCR attached to the Fundación Sant Joan de Deu; and SDPI Pura Fernàndez of the Hospital of Llobregat: ECCR of the Instituto Universitario de Investigación en Atención Primaria Jordi Golp).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Geddes A, Scholten P (2016) The politics of migration and immigration in Europe. Sage, LondonCrossRefGoogle Scholar
  2. 2.
    Triandafyllidou A (2016) Irregular migration in Europe: myths and realities. Routledge, London and New YorkGoogle Scholar
  3. 3.
    Flahaux ML, De Haas H (2016) African migration: trends, patterns, drivers. Comparative Migration Studies 4(1):1.  https://doi.org/10.1186/s40878-015-0015-6 CrossRefGoogle Scholar
  4. 4.
    Ritz-Timme S, Cattaneo C, Collins MJ, Waite ER, Schütz HW, Kaatsch HJ, Borrman HIM (2000) Age estimation: the state of the art in relation to the specific demands of forensic practise. Int J Legal Med 113(3):129–136.  https://doi.org/10.1007/s004140050283 CrossRefPubMedGoogle Scholar
  5. 5.
    Schmeling A, Geserick G, Reisinger W, Olze A (2007) Age estimation. Forensic Sci Int 165(2–3):178–181.  https://doi.org/10.1016/j.forsciint.2006.05.016 CrossRefPubMedGoogle Scholar
  6. 6.
    Decker SH, Junger-Tas J (2006) International handbook of juvenile justice. Springer, NetherlandsGoogle Scholar
  7. 7.
    Zimring FE, Langer M, Tanenhaus DS (2015) Juvenile justice in global perspective. NYU Press, New York.  https://doi.org/10.18574/nyu/9781479826537.001.0001 CrossRefGoogle Scholar
  8. 8.
    Hochberg ZE (2002) Endocrine control of skeletal maturation. Annotation to bone age readings. Karger, Basel.  https://doi.org/10.1159/isbn.978-3-318-00778-7 CrossRefGoogle Scholar
  9. 9.
    Martin DD, Wit JM, Hochberg ZE, Sävendahl L, Van Rijn RR, Fricke O, Albertsson-Wikland K (2011) The use of bone age in clinical practice–part 1. Horm Res Paediat 76(1):1–9.  https://doi.org/10.1159/000329372 CrossRefGoogle Scholar
  10. 10.
    Lee SC, Shim JS, Seo SW, Lim KS, Ko KR (2013) The accuracy of current methods in determining the timing of epiphysiodesis. Bone Joint J 95:993–1000CrossRefPubMedGoogle Scholar
  11. 11.
    Wang WWJ, Xia CW, Zhu F, Zhu ZZ, Wang B, Wang SF, Qiu Y (2009) Correlation of Risser sign, radiographs of hand and wrist with the histological grade of iliac crest apophysis in girls with adolescent idiopathic scoliosis. Spine 34(17):1849–1854.  https://doi.org/10.1097/BRS.0b013e3181ab358c CrossRefPubMedGoogle Scholar
  12. 12.
    Grant S (2011) Recording and identifying European frontier deaths. Eur J Migr Law 13(2):135–156.  https://doi.org/10.1163/157181611X571259 CrossRefGoogle Scholar
  13. 13.
    Tanner JM (1990) Foetus into man: physical growth from conception to maturity. Harvard University Press, USAGoogle Scholar
  14. 14.
    Bláha P, Susanne C, Rebato E (2007) Essentials of biological anthropology. Karolinum Press Charles University, Prague, Czech RepublicGoogle Scholar
  15. 15.
    Schmeling A, Reisinger W, Geserick G, Olze A (2006) Age estimation of unaccompanied minors. Part I. General considerations. Forensic Sci Int 159:61–64CrossRefGoogle Scholar
  16. 16.
    Olze A, Reisinger W, Geserick G, Schmeling A (2006) Age estimation of unaccompanied minors: Part II. Dental aspects. Forensic Sci Int 159:65–67CrossRefGoogle Scholar
  17. 17.
    Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, Stanford, USAGoogle Scholar
  18. 18.
    Tanner JM, Healy MJ, Goldstein H, Cameron N (2001) Assessment of skeletal maturity and prediction of adult height (TW3Method), 3rd edn. Saunders, London, UKGoogle Scholar
  19. 19.
    Roche AF, Chumlea WM, Thissen D (1988) Assessing the skeletal maturity of the hand-wrist: Fels method. Charles Thomas, Spring eld, Illinois, USAGoogle Scholar
  20. 20.
    Tanner JM, Gibbons RD (1994) A computerized image analysis system for estimating Tanner-Whitehouse 2 bone age. Horm Res 42(6):282–287.  https://doi.org/10.1159/000184210 CrossRefPubMedGoogle Scholar
  21. 21.
    Schulz R, Mühler M, Mutze S, Schmidt S, Reisinger W, Schmeling A (2005) Studies on the time frame for ossification of the medial epiphysis of the clavicle as revealed by CT scans. Int J Legal Med 119(3):142–145.  https://doi.org/10.1007/s00414-005-0529-9 CrossRefPubMedGoogle Scholar
  22. 22.
    Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45(2):211–227PubMedGoogle Scholar
  23. 23.
    Nyström M, Kleemola-Kujala E, Evälahti M, Peck L, Kataja M (2001) Emergence of permanent teeth and dental age in a series of Finns. Acta Odontol Scand 59(2):49–56.  https://doi.org/10.1080/000163501750157072 CrossRefPubMedGoogle Scholar
  24. 24.
    Smith BH (1991) Standards of human tooth formation and dental age assessment. In: Kelly MA, Larsen CS (eds) Advances in dental anthropology. Wiley-Liss Inc, New York, USAGoogle Scholar
  25. 25.
    Khorate MM, Dinkar AD, Ahmed J (2014) Accuracy of age estimation methods from orthopantomograph in forensic odontology: a comparative study. Forensic Sci Int 234:184CrossRefPubMedGoogle Scholar
  26. 26.
    Ulijaszek SJ, Johnston FE, Preece MA (1998) The Cambridge Encyclopedia of human growth and development. Cambridge University Press, UKGoogle Scholar
  27. 27.
    Heyerdahl S, Kase BF, Stake G (1994) Skeletal maturation during thyroxine treatment in children with congenital hypothyroidism. Acta Paediatr 83(6):618–622CrossRefPubMedGoogle Scholar
  28. 28.
    De Donno A, Santoro V, Lubelli S, Marrone M, Lozito P, Introna F (2013) Age assessment using the Greulich and Pyle method on a heterogeneous sample of 300 Italian healthy and pathologic subjects. Forensic Sci Int 229:157e1–157e6CrossRefGoogle Scholar
  29. 29.
    Senn DR, Weems RA (2013) Manual of forensic odontology. CRC Press, Boca Raton. Florida.  https://doi.org/10.1201/b13744 CrossRefGoogle Scholar
  30. 30.
    Gupta S, Agnihotri A, Chandra A, Gupta OP (2014) Contemporary practice in forensic odontology. J Oral Maxil Surg 18:244–250Google Scholar
  31. 31.
    Rötzscher K (2014) Forensic and legal dentistry. Springer International Publishing, Switzerland.  https://doi.org/10.1007/978-3-319-01330-5 CrossRefGoogle Scholar
  32. 32.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Roetzscher K (2008) Updated recommendations of the Study Group on Forensic Age Diagnostics for age estimation in the living in criminal proceedings. Rechtsmedizin 18(6):451–453.  https://doi.org/10.1007/s00194-008-0571-2 CrossRefGoogle Scholar
  33. 33.
    Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Rötzscher K (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460.  https://doi.org/10.1007/s00414-008-0254-2 CrossRefPubMedGoogle Scholar
  34. 34.
    Schmeling A, Prieto JL, Landa MI, Garamendi PM (2011) Forensic age estimation in unaccompanied minors and young living adults. In: Vieira DN (ed) Forensic medicine—from old problems to new challenges. Ch, vol 5. InTech, pp 77–120.  https://doi.org/10.5772/19261
  35. 35.
    Franklin D (2010) Forensic age estimation in human skeletal remains: current concepts and future directions. Legal Med 12(1):1–7.  https://doi.org/10.1016/j.legalmed.2009.09.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263CrossRefPubMedGoogle Scholar
  37. 37.
    Dreizen S, Snodgrasse RM, Webb-Peploe H, Parker GS, Spies TD (1957) Bilateral symmetry of skeletal maturation in the human hand and wrist. Ama J Dis Child 93(2):122–127PubMedGoogle Scholar
  38. 38.
    Schmeling A, Baumann U, Schmidt S, Wernecke KD, Reisinger W (2006) Reference data for the Thiemann–Nitz method of assessing skeletal age for the purpose of forensic age estimation. Int J Legal Med 120(1):1–4.  https://doi.org/10.1007/s00414-005-0002-9 CrossRefPubMedGoogle Scholar
  39. 39.
    Hackman L, Black S (2012) Does mirror imaging a radiograph affect reliability of age assessment using the Greulich and Pyle atlas? J Forensic Sci 57(5):1276–1280.  https://doi.org/10.1111/j.1556-4029.2012.02150.x CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ashutosh S, Saraswat PK, Agarwal SK, Gupta P (2004) A study of wrist ossification for age estimation in pediatric group in Central Rajasthan. J Indian Forensic Sci 26:132–135Google Scholar
  41. 41.
    Gilsanz V, Ratib O (2005) Hand bone age. A digital atlas of skeletal maturity. Springer, Los AngelesGoogle Scholar
  42. 42.
    Lin L (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268.  https://doi.org/10.2307/2532051 CrossRefPubMedGoogle Scholar
  43. 43.
    Zhu W, Zeng N, Wang N (2010) Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. NESUG proceedings: health care and life sciences. Baltimore, MarylandGoogle Scholar
  44. 44.
    Brown LD, Cai TT, DasGupta A (2001) Interval estimation for a binomial proportion. Stat Sci 101–117Google Scholar
  45. 45.
    Groell R, Lindbichler F, Riepl T, Gherra L, Roposch A, Fotter R (1999) The reliability of bone age determination in central European children using the Greulich and Pyle method. Br J Radiol 72(857):461–464.  https://doi.org/10.1259/bjr.72.857.10505010 CrossRefPubMedGoogle Scholar
  46. 46.
    Lynnerup N, Belard E, Buch-Olsen K, Sejrsen B, Damgaard-Pedersen K (2008) Intra- and interobserver error of the Greulich-Pyle method as used on a Danish forensic sample. Forensic Sci Int 179:242e1–242-e6CrossRefGoogle Scholar
  47. 47.
    Chaumoitre K, Saliba-Serre B, Adalian P, Signoli M, Leonetti G, Panuel M (2017) Forensic use of the Greulich and Pyle atlas: prediction intervals and relevance. Eur Radiol 27(3):1032–1043.  https://doi.org/10.1007/s00330-016-4466-4 CrossRefPubMedGoogle Scholar
  48. 48.
    Hair JF, Anderson RE, Babin BJ, Black WC (2010) Multivariate data analysis: a global perspective (Vol. 7). Pearson, Upper Saddle RiverGoogle Scholar
  49. 49.
    Mora S, Boechat MI, Pietka E, Huang HK, Gilsanz V (2001) Skeletal age determinations in children of European and African descent: applicability of the Greulich and Pyle standards. Pediatr Res 50(5):624–628.  https://doi.org/10.1203/00006450-200111000-00015 CrossRefPubMedGoogle Scholar
  50. 50.
    Van Rijn RR, Lequin MH, Robben SG, Hop WC, van Kuijk C (2001) Is the Greulich and Pyle atlas still valid for Dutch Caucasian children today? Pediatr Radiol 31(10):748–752.  https://doi.org/10.1007/s002470100531 CrossRefPubMedGoogle Scholar
  51. 51.
    Chiang KH, Chou ASB, Yen PS, Ling CM, Lin CC et al (2005) The reliability of using Greulich-Pyle method to determine children’s bone age in Taiwan. Tzu Chi Med J 17:417–420Google Scholar
  52. 52.
    Garamendi PM, Landa MI, Ballesteros J, Solano MA (2005) Reliability of the methods applied to assess age minority in living subjects around 18 years old. A survey on a Moroccan origin population. Forensic Sci Int 154(1):3–12.  https://doi.org/10.1016/j.forsciint.2004.08.018 CrossRefPubMedGoogle Scholar
  53. 53.
    Büken B, Safak AA, Yazici B, Büken E, Mayda AS (2007) Is the assessment of bone age by the Greulich-Pyle method reliable at forensic age estimation for Turkish children? Forensic Sci Int 173(2-3):146–153.  https://doi.org/10.1016/j.forsciint.2007.02.023 CrossRefPubMedGoogle Scholar
  54. 54.
    Calfee RP, Sutter M, Steffen JA, Goldfarb CA (2010) Skeletal and chronological ages in American adolescents: current findings in skeletal maturation. J Child Orthop 4(5):467–470.  https://doi.org/10.1007/s11832-010-0289-z CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tisè M, Mazzarini L, Fabrizzi G, Ferrante L, Giorgetti R, Tagliabracci A (2011) Applicability of Greulich and Pyle method for age assessment in forensic practice on an Italian sample. Int J Legal Med 125(3):411–416.  https://doi.org/10.1007/s00414-010-0541-6 CrossRefPubMedGoogle Scholar
  56. 56.
    Dembetembe KA, Morris AG (2012) Is Greulich-Pyle age estimation applicable for determining maturation in male Africans? S Afr J Sci 108:1–6CrossRefGoogle Scholar
  57. 57.
    Patil ST, Parchand MP, Meshram MM, Kamdi NY (2012) Applicability of Greulich and Pyle skeletal age standards to Indian children. Forensic Sci Int 216:200-e1–200-e4CrossRefGoogle Scholar
  58. 58.
    Hackman L, Black S (2013) The reliability of the Greulich and Pyle atlas when applied to a modern Scottish population. J Forensic Sci 58(1):114–119.  https://doi.org/10.1111/j.1556-4029.2012.02294.x CrossRefPubMedGoogle Scholar
  59. 59.
    Manzoor Mughal A, Hassan N, Ahmed A (2014) The applicability of the Greulich & Pyle Atlas for bone age assessment in primary school-going children of Karachi, Pakistan. Pak J Med Sci 30(2):409–411PubMedPubMedCentralGoogle Scholar
  60. 60.
    Zabet D, Rérolle C, Pucheux J, Telmon N, Saint-Martin P (2015) Can the Greulich and Pyle method be used on French contemporary individuals? Int J Legal Med 129(1):171–177.  https://doi.org/10.1007/s00414-014-1028-7 CrossRefPubMedGoogle Scholar
  61. 61.
    Chaumoitre K, Lamtali S, Baali A, Saliba-Serre B, Lahmam A, Aboussad A, Panuel M (2010) Influence of socioeconomic status and body mass index on bone age. Horm Res Paediat 74(2):129–135.  https://doi.org/10.1159/000313371 CrossRefGoogle Scholar
  62. 62.
    Jahari AB, Haas J, Husaini MA, Pollitt E (2000) Effects of an energy and micronutrient supplement on skeletal maturation in undernourished children in Indonesia. Eur J Clin Nutr 54:74–79CrossRefGoogle Scholar
  63. 63.
    Fleshman K (2000) Bone age determination in a pediatric population as an indicator of nutritional status. Trop Dr 30:16–18Google Scholar
  64. 64.
    Melsen B, Wenzel A, Miletic T, Andreasen J, Vagn-Hansen PL, Terp S (1986) Dental and skeletal maturity in adoptive children: assessment at arrival and after one year in the admitting country. Ann Hum Biol 13(2):153–159.  https://doi.org/10.1080/03014468600008291 CrossRefPubMedGoogle Scholar
  65. 65.
    Sempé M, Pavía C (1979) Atlas maturation squelettique: ossification séquentielle du poignet et de la main. Simep SA. Lyon, FranceGoogle Scholar
  66. 66.
    Gök Ş, Erölçer N, Özen C (1985) Age determination in forensic medicine. TC, Adalet Bakanlığı Adli Tıp Kurumu Yayınları, 1–26Google Scholar
  67. 67.
    Pinchi V, De Luca F, Ricciardi F, Focardi M, Piredda V, Mazzeo E, Norelli GA (2014) Skeletal age estimation for forensic purposes: a comparison of GP, TW2 and TW3 methods on an Italian sample. Forensic Sci Int 238:83–90.  https://doi.org/10.1016/j.forsciint.2014.02.030 CrossRefPubMedGoogle Scholar
  68. 68.
    Buken B, Safak A, Buken E, Yazici B, Erkol Z et al (2010) Is the Tanner-Whitehouse (TW3) method sufficiently reliable for forensic age determination of Turkish children. Turk J Med Sci 40:797–805Google Scholar
  69. 69.
    Schmidt S, Koch B, Schulz R, Reisinger W, Schmeling A (2008) Studies in use of the Greulich–Pyle skeletal age method to assess criminal liability. Legal Med 10(4):190–195.  https://doi.org/10.1016/j.legalmed.2008.01.003 CrossRefPubMedGoogle Scholar
  70. 70.
    Thodberg HH, Kreiborg S, Juul A, Pedersen KD (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE T Med Imaging 28(1):52–66.  https://doi.org/10.1109/TMI.2008.926067 CrossRefGoogle Scholar
  71. 71.
    Bouchard M, Sempe M (2001) «MATUROS 4.0» CD: un nouvel outil d'évaluation de la maturation squelettique Biom hum et anthropol 19:9–12Google Scholar
  72. 72.
    van Rijn RR, Lequin MH, Thodberg HH (2009) Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol 39(6):591–597.  https://doi.org/10.1007/s00247-008-1090-8 CrossRefPubMedGoogle Scholar
  73. 73.
    Tanner JM (1962) Growth at adolescence, 2nd edn. Blackwell, OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Zoology and Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Deparment of Genetics, Microbiology and Statistics. Faculty of BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations