International Journal of Legal Medicine

, Volume 132, Issue 2, pp 563–577 | Cite as

Fully automatic CT-histogram-based fat estimation in dead bodies

  • Michael Hubig
  • Sebastian Schenkl
  • Holger Muggenthaler
  • Felix Güttler
  • Andreas Heinrich
  • Ulf Teichgräber
  • Gita Mall
Original Article


Post-mortem body cooling is the foundation of temperature-based death time estimations (TDE) in homicide cases. Forensic science generally provides two types of p.m. body cooling models, the phenomenological and the physical models. Since both of them have to implement important individual parameters like the quantity of abdominal fat explicitly or implicitly, a more exact quantification and localization of abdominal fat is a desideratum in TDE. Particularly for the physical models, a better knowledge of the abdominal fat distribution could lead to relevant improvements in TDEs. Modern imaging methods in medicine like computed tomography (CT) are opening up the possibility to register the quantity and spatial distribution of body fat in individual cases with unprecedented precision. Since a CT-scan of an individual’s abdominal region can comprise 1000 slices as an order of magnitude, it is evident that their evaluation for body fat quantification and localization needs fully automated algorithms. The paper at hand describes the development and validation of such an algorithm called “CT-histogram-based fat estimation and quasi-segmentation” (CFES). The approach can be characterized as a weighted least squares method dealing with the gray value histogram of single CT-slices only. It does not require any anatomical a priori information nor does it perform time-consuming feature detection on the CT-images. The processing result consists in numbers quantifying the amount of abdominal body fat and of muscle-, organ-, and connective tissue. As a by-product, CFES generates a quasi-segmentation of the slices processed differentiating fat from muscle-, organ-, and connective tissue. The tool is validated on synthetic data and on CT-data of a special phantom. It was also applied on a CT-scan of a dead body, where it produced anatomically plausible results.


Body fat quantification Body fat quasi-segmentation Computed tomography—scans Weighted least squares estimation on gray value histogram Temperature-based death time estimation 



We gratefully acknowledge the technical CT aid of Mrs. Antje Kubin as MTRA in IDIR II.

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was reviewed and approved by the ethics committee of the University Hospital Jena. According to the ethics committee’s statement, written consents of the kinship for the abdominal CT-slices shown in the article were not needed since the bodies were confiscated by the local prosecution who directed the CT-scans for investigations. Moreover, the representations of the slices are totally anonymized.

Supplementary material

414_2017_1757_MOESM1_ESM.pdf (913 kb)
ESM 1 (PDF 913 kb)


  1. 1.
    Marshall TK, Hoare FE (1962) Estimating the time of death—the rectal cooling after death and its mathematical expression. J Forensic Sci 7:56–81Google Scholar
  2. 2.
    Marshall TK, Hoare FE (1962) Estimating the time of death—the use of the cooling formula in the study of postmortem cooling. J Forensic Sci 7:189–210Google Scholar
  3. 3.
    Marshall TK, Hoare FE (1962) Estimating the time of death—the use of body temperature in estimating the time of death. J Forensic Sci 7:211–221Google Scholar
  4. 4.
    Henßge C (1979) Die Präzision von Todeszeitschätzungen durch die mathematische Beschreibung der rektalen Leichenabkühlung. Z Rechtsmed 83:49–67CrossRefPubMedGoogle Scholar
  5. 5.
    Mall G, Eisenmenger W (2005) Estimation of time since death by heat-flow finite-element model. Part I: method, model, calibration and validation. Legal Med 7:1–14. CrossRefPubMedGoogle Scholar
  6. 6.
    Mall G, Eisenmenger W (2005) Estimation of time since death by heat-flow finite-element model. Part II: application to non-standard cooling conditions and preliminary results in practical casework. Legal Med 7:69–80. CrossRefPubMedGoogle Scholar
  7. 7.
    Smart JL (2010) Estimation of time of death with a Fourier series unsteady-state heat transfer model. J Forensic Sci 55:1481–1487. CrossRefPubMedGoogle Scholar
  8. 8.
    Schenkl S, Muggenthaler H, Hubig M, Erdmann B, Weiser M, Zachow S, Heinrich A, Güttler FV, Teichgräber U, Mall G (2017) Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis. Int J Legal Med 131:699–712. CrossRefPubMedGoogle Scholar
  9. 9.
    Aparicio HJ, Himali JJ, Beiser AS et al (2017) Overweight, obesity, and survival after stroke in the Framingham heart study. J Am Heart Assoc 6.
  10. 10.
    Wohlfahrt-Veje C, Tinggaard J, Winther K et al (2014) Body fat throughout childhood in 2647 healthy Danish children: agreement of BMI, waist circumference, skinfolds with dual X-ray absorptiometry. Eur J Clin Nutr 68:664–670. CrossRefPubMedGoogle Scholar
  11. 11.
    Hasse J (1995) Accuracy of subcutaneous fat measurement: comparison of skinfold calipers, ultrasound, and computed tomography. Orphanidou C, McCargar, Birmingham CL, et al. University of British Columbia and St. Paul's Hospital, Vancouver. Nutrition in Clinical Practice 10: 161-162.
  12. 12.
    Borkan GA, Gerzof SG, Robbins AH, Hults DE, Silbert CK, Silbert JE (1982) Assessment of abdominal fat content by computed tomography. Am J Clin Nutr 36:172–177CrossRefPubMedGoogle Scholar
  13. 13.
    Hofer M (2010) CT-Kursbuch. Didamed-Verlag DüsseldorfGoogle Scholar
  14. 14.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Press Syndicate of the University of Cambridge, New YorkGoogle Scholar
  15. 15.
    Hubig M, Muggenthaler H, Sinicina I, Mall G (2015) Temperature based forensic death time estimation: the standard model in experimental test. Legal Med 17:381–387. CrossRefPubMedGoogle Scholar
  16. 16.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern SMC-9(1):62–66CrossRefGoogle Scholar
  17. 17.
    Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122CrossRefPubMedGoogle Scholar
  18. 18.
    Rogalla P, Meiri N, Hoksch B, Boeing H, Hamm B (1998) Low-dose spiral computed tomography for measuring abdominal fat volume and distribution in a clinical setting. Eur J Clin Nutr 52:597–602CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshizumi T, Nakamura T, Yamane M, Islam AHMW, Menju M, Yamasaki K, Arai T, Kotani K, Funahashi T, Yamashita S, Matsuzawa Y (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211(1):283–286CrossRefPubMedGoogle Scholar
  20. 20.
    Glasbey CA, Robinson CD (2002) Estimators of tissue proportions from X-ray CT images. Biometrics 58:928–936CrossRefPubMedGoogle Scholar
  21. 21.
    Allen P, Branscheid W, Dobrowolski A, Horn P, Romvari R (2004) Schlachtkörperwertbestimmung beim Schwein – Röntgen-Computertomographie als mögliche Referenzmethode. Fleischwirtschaft 84(3):109–112Google Scholar
  22. 22.
    Romvári R, Dobrowolski A, Repa I et al (2006) Development of a computed tomographic calibration method for the determination of lean meat content in pig carcasses. Acta Vet Hung 54:1–10. CrossRefPubMedGoogle Scholar
  23. 23.
    Johansen J, Egelandsdal B, Roe M, Kvaal K, Aastveit AH (2007) Calibration models for lamb carcass composition analysis using computerized tomography (CT) imaging. Chemom Intell Lab Syst 87:303–311CrossRefGoogle Scholar
  24. 24.
    Kongsro J, Røe M, Aastveit AH, Kvaal K, Egelandsdal B (2008) Virtual dissection of lamb carcasses using computer tomography (CT) and its correlation to manual dissection. J Food Eng 88:86–93CrossRefGoogle Scholar
  25. 25.
    Pednekar A, Bandekar AN, Kakadiaris IA, Naghavi M (2005) Automatic segmentation of abdominal fat from CT data. Proceedings of the Seventh IEEE Workshop on Applications of Computer Vision (WACV/MOTION’05), 2005 WACV/MOTIONS ’05 Volume 1 Seventh IEEE: pp. 308–315Google Scholar
  26. 26.
    Ohshima S, Yamamoto S, Yamaji T et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Jpn J Radiol Technol 64:1177–1181CrossRefGoogle Scholar
  27. 27.
    McEvoy FJ, Madsen MT, Strathe AB, Svalastoga E (2008) Hounsfield unit dynamics of adipose tissue and non-adipose soft tissues in growing pigs. Res Vet Sci 84:300–304CrossRefPubMedGoogle Scholar
  28. 28.
    McEvoy FJ, Madsen MT, Nielsen MB, Svalastoga E (2009) Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition. Acta Vet Scand 51:28. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cecchini S, Cavazzini E, Marchesi F, Sarli L, Roncoroni L (2011) Computed tomography volumetric fat parameters versus body mass index for predicting short-term outcomes of colon surgery. World J Surg 35:415–423. CrossRefPubMedGoogle Scholar
  30. 30.
    Kanaly CW, Ding D, Mehta AI, Waller AF, Crocker I, Desjardins A, Reardon DA, Friedman AH, Bigner DD, Sampson JH (2011) A novel method for volumetric MRI response assessment of enhancing brain Tumors. PLoS ONE 6(1):e16031. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Subramaniam K, Hoffman EA, Tawhai MH (2012) Engineering in medicine and biology society (EMBC), 2012 Annual International Conference of the IEEE San Diego, California USA, 28 August - 1 September, 4072-4089.
  32. 32.
    Kim YJ, Lee SH, Kim TY, Park JY, Choi SH, Kim KG (2013) Body fat assessment method using CT images with separation mask algorithm. J Digit Imaging 26:155–162. CrossRefPubMedGoogle Scholar
  33. 33.
    Kullberg J, Hedström A, Brandberg J, Strand R, Johansson L, Bergström G, Ahlström H (2017) Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studies. Sci Rep 7:10425. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN (2005) Introduction to the language of three-dimensional imaging with multidetector CT informatics in radiology. RadioGraphics 25(5):1409–1428. CrossRefPubMedGoogle Scholar
  35. 35.
    Shahzada R, Bos D, Metz C, Rossi A, van der Lugt A, Klein S, Witteman J, de Feyter P, Niessen W, van Vliet L, van Walsum T (2013) Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach. Med Phys 40(9):091910. CrossRefGoogle Scholar
  36. 36.
    Fornaro J (2011) Kapitel 5 · Postprocessing. In: Alkadhi H, Leschka S, Stolzmann P (eds) Wie funktioniert CT? Springer-Verlag, Berlin Heidelberg. Google Scholar
  37. 37.
    Buzug TM (2004) Einführung in die Computertomographie: Mathematisch-physikalische Grundlagen der Bildrekonstruktion. Springer-Verlag, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Forensic MedicineJena University Hospital—Friedrich Schiller University JenaJenaGermany
  2. 2.Institute for Diagnostic and Interventional RadiologyJena University Hospital—Friedrich Schiller University JenaJenaGermany

Personalised recommendations