International Journal of Legal Medicine

, Volume 132, Issue 2, pp 593–598 | Cite as

Postmortem 1H-MRS—Detection of Ketone Bodies and Glucose in Diabetic Ketoacidosis

  • Jakob Heimer
  • Dominic Gascho
  • Vasiliki Chatzaraki
  • Damaris Fröhlich Knaute
  • Vera Sterzik
  • Rosa Maria Martinez
  • Michael J. Thali
  • Niklaus Zoelch
Method Paper

Abstract

Diabetic ketoacidosis (DKA) is a metabolic complication of diabetes mellitus that takes a lethal course if untreated. In this way relevant to forensic medicine, secure diagnosis of DKA usually involves the evidence of elevated levels of glucose and the ketone bodies acetone, acetoacetate, and β-hydroxybutyrate in corpse fluids. We conducted a postmortem hydrogen proton magnetic resonance spectroscopy (1H-MRS) in a case of lethal DKA. Distinctive resonances of all three ketone bodies as well as glucose were visible in spectra of cerebrospinal fluid, vitreous humor, and white matter. Estimated concentrations of ketone bodies and glucose supported the findings both of autopsy and biochemical analysis. Advantages of human postmortem 1H-MRS are the lack of movement and flow artifacts as well as lesser limitations of scan duration. Postmortem 1H-MRS is able to non-invasively measure concentrations of glucose and ketone bodies in small volumes of various regions of the brain. It may thus become a diagnostic tool for forensic investigations by quick determination of pathological metabolite concentrations in addition to conventional autopsy.

Keywords

Diabetic Ketoacidosis Proton Magnetic Resonance Spectroscopy Postmortem 

Notes

Acknowledgements

The authors express their gratitude to Emma Louise Kessler, MD for her generous donation to the Zurich Institute of Forensic Medicine, University of Zurich, Switzerland.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors. Ethical approval was obtained by the Ethics Committee of the Canton of Zurich, Nr. KEK ZH-Nr. 15-0686.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15(6):412–426.  https://doi.org/10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Curtis JR, To T, Muirhead S, Cummings E, Daneman D (2002) Recent trends in hospitalization for diabetic ketoacidosis in Ontario children. Diabetes Care 25(9):1591–1596.  https://doi.org/10.2337/diacare.25.9.1591 CrossRefPubMedGoogle Scholar
  3. 3.
    Mitchell R, Thomas SD, Langlois NE (2013) How sensitive and specific is urinalysis ‘dipstick’ testing for detection of hyperglycaemia and ketosis? An audit of findings from coronial autopsies. Pathology 45(6):587–590.  https://doi.org/10.1097/PAT.0b013e3283650b93 CrossRefPubMedGoogle Scholar
  4. 4.
    Palmiere C, Sporkert F, Vaucher P, Werner D, Bardy D, Rey F, Lardi C, Brunel C, Augsburger M, Mangin P (2012) Is the formula of Traub still up to date in antemortem blood glucose level estimation? Int J Legal Med 126(3):407–413.  https://doi.org/10.1007/s00414-011-0659-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Elliott S, Smith C, Cassidy D (2010) The post-mortem relationship between beta-hydroxybutyrate (BHB), acetone and ethanol in ketoacidosis. Forensic Sci Int 198(1–3):53–57.  https://doi.org/10.1016/j.forsciint.2009.10.019 CrossRefPubMedGoogle Scholar
  6. 6.
    Sadones N, Lambert WE, Stove CP (2017) The (non)sense of routinely analysing beta-hydroxybutyric acid in forensic toxicology casework. Forensic Sci Int 274:38–43.  https://doi.org/10.1016/j.forsciint.2017.01.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Musshoff F, Hess C, Madea B (2011) Disorders of glucose metabolism: post mortem analyses in forensic cases-part II. Int J Legal Med 125(2):171–180.  https://doi.org/10.1007/s00414-010-0510-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Choe BY, Gil HJ, Suh TS, Shinn KS (1995) Postmortem metabolic and morphologic alterations of the dog brain thalamus with use of in vivo 1H magnetic resonance spectroscopy and electron microscopy. Investig Radiol 30(5):269–274.  https://doi.org/10.1097/00004424-199505000-00001 CrossRefGoogle Scholar
  9. 9.
    Petroff OA, Ogino T, Alger JR (1988) High-resolution proton magnetic resonance spectroscopy of rabbit brain: regional metabolite levels and postmortem changes. J Neurochem 51(1):163–171.  https://doi.org/10.1111/j.1471-4159.1988.tb04850.x CrossRefPubMedGoogle Scholar
  10. 10.
    Ith M, Bigler P, Scheurer E, Kreis R, Hofmann L, Dirnhofer R, Boesch C (2002) Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ 1H-magnetic resonance spectroscopy. Magn Reson Med 48(5):915–920.  https://doi.org/10.1002/mrm.10294 CrossRefPubMedGoogle Scholar
  11. 11.
    Musshoff F, Klotzbach H, Block W, Traeber F, Schild H, Madea B (2011) Comparison of post-mortem metabolic changes in sheep brain tissue in isolated heads and whole animals using 1H-MR spectroscopy--preliminary results. Int J Legal Med 125(5):741–744.  https://doi.org/10.1007/s00414-010-0463-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Scheurer E, Ith M, Dietrich D, Kreis R, Husler J, Dirnhofer R, Boesch C (2005) Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain. NMR Biomed 18(3):163–172.  https://doi.org/10.1002/nbm.934 CrossRefPubMedGoogle Scholar
  13. 13.
    Ith M, Scheurer E, Kreis R, Thali M, Dirnhofer R, Boesch C (2011) Estimation of the postmortem interval by means of 1H MRS of decomposing brain tissue: influence of ambient temperature. NMR Biomed 24(7):791–798.  https://doi.org/10.1002/nbm.1623 CrossRefPubMedGoogle Scholar
  14. 14.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508(1):333–348.  https://doi.org/10.1111/j.1749-6632.1987.tb32915.x CrossRefPubMedGoogle Scholar
  15. 15.
    Tkáč I, Starčuk Z, Choi I-Y, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41(EPFL-ARTICLE-177519):649–656.  https://doi.org/10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G PubMedGoogle Scholar
  16. 16.
    Edden RA, Schär M, Hillis AE, Barker PB (2006) Optimized detection of lactate at high fields using inner volume saturation. Magn Reson Med 56(4):912–917.  https://doi.org/10.1002/mrm.21030 CrossRefPubMedGoogle Scholar
  17. 17.
    Versluis MJ, Kan HE, van Buchem MA, Webb AG (2010) Improved signal to noise in proton spectroscopy of the human calf muscle at 7 T using localized B1 calibration. Magn Reson Med 63(1):207–211.  https://doi.org/10.1002/mrm.22195 PubMedGoogle Scholar
  18. 18.
    Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14(1):26–30.  https://doi.org/10.1002/mrm.1910140104 CrossRefPubMedGoogle Scholar
  19. 19.
    Kreis R, Ernst T, Ross B (1993) Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson Ser B 102(1):9–19.  https://doi.org/10.1006/jmrb.1993.1056 CrossRefGoogle Scholar
  20. 20.
    Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse S, Jung RE, Morrison LA (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 55(6):1219–1226.  https://doi.org/10.1002/mrm.20901 CrossRefPubMedGoogle Scholar
  21. 21.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679.  https://doi.org/10.1002/mrm.1910300604 CrossRefPubMedGoogle Scholar
  22. 22.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S (2008) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(suppl_1):D603–D610.  https://doi.org/10.1093/nar/gkn810 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kreis R (2016) The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn Reson Med 75(1):15–18.  https://doi.org/10.1002/mrm.25568 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen L, Bernstein M, Huston J, Fain S (2001) Measurements of T1 relaxation times at 3.0 T: implications for clinical MRA. In: Proceedings of the 9th Annual Meeting of ISMRM, Glasgow, ScotlandGoogle Scholar
  25. 25.
    Ethofer T, Mader I, Seeger U, Helms G, Erb M, Grodd W, Ludolph A, Klose U (2003) Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 Tesla. Magn Reson Med 50(6):1296–1301.  https://doi.org/10.1002/mrm.10640 CrossRefPubMedGoogle Scholar
  26. 26.
    Ashburner J, Barnes G, Chen C, Daunizeau J, Flandin G, Friston K, Kiebel S, Kilner J, Litvak V, Moran R (2012) SPM8 Manual. Wellcome Trust Centre for Neuroimaging Institute of Neurology, UCLGoogle Scholar
  27. 27.
    Traub F (1969) Methode zur Erkennung von tödlichen Zuckerstoffwechselstörungen an der Leiche (Diabetes mellitus und Hypoglykämie). Zentralbl Allg Pathol 112(4):390–399PubMedGoogle Scholar
  28. 28.
    Kreis R, Ross B (1992) Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 184(1):123–130.  https://doi.org/10.1148/radiology.184.1.1319074 CrossRefPubMedGoogle Scholar
  29. 29.
    Seymour KJ, Bluml S, Sutherling J, Sutherling W, Ross BD (1999) Identification of cerebral acetone by1H-MRS in patients with epilepsy controlled by ketogenic diet. MAGMA 8(1):33–42.  https://doi.org/10.1007/BF02590633 PubMedGoogle Scholar
  30. 30.
    Wootton-Gorges SL, Buonocore MH, Kuppermann N, Marcin J, Dicarlo J, Neely EK, Barnes PD, Glaser N (2005) Detection of cerebral {beta}-hydroxy butyrate, acetoacetate, and lactate on proton MR spectroscopy in children with diabetic ketoacidosis. AJNR Am J Neuroradiol 26(5):1286–1291PubMedGoogle Scholar
  31. 31.
    Artzi M, Liberman G, Vaisman N, Bokstein F, Vitinshtein F, Aizenstein O, Ben BD (2017) Changes in cerebral metabolism during ketogenic diet in patients with primary brain tumors: 1H-MRS study. J Neuro-Oncol 132(2):267–275.  https://doi.org/10.1007/s11060-016-2364-x CrossRefGoogle Scholar
  32. 32.
    Cecil KM, Mulkey SB, Ou X, Glasier CM (2015) Brain ketones detected by proton magnetic resonance spectroscopy in an infant with Ohtahara syndrome treated with ketogenic diet. Pediatr Radiol 45(1):133–137.  https://doi.org/10.1007/s00247-014-3032-y CrossRefPubMedGoogle Scholar
  33. 33.
    Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1992) Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci 89(3):1109–1112.  https://doi.org/10.1073/pnas.89.3.1109 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gruetter R, Garwood M, Uǧurbil K, Seaquist ER (1996) Observation of resolved glucose signals in 1H NMR spectra of the human brain at 4 Tesla. Magn Reson Med 36(1):1–6.  https://doi.org/10.1002/mrm.1910360102 CrossRefPubMedGoogle Scholar
  35. 35.
    Nagae-Poetscher LM, McMahon M, Braverman N, Lawrie WT, Fatemi A, Degaonkar M, Horská A, Pomper MG, Chacko VP, Barker PB (2004) Metabolites in ventricular cerebrospinal fluid detected by proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 20(3):496–500.  https://doi.org/10.1002/jmri.20128 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Forensic Medicine, Department of Forensic Medicine and ImagingUniversity of ZurichZurichSwitzerland
  2. 2.Hospital of Psychiatry, Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of ZurichZurichSwitzerland

Personalised recommendations