International Journal of Legal Medicine

, Volume 132, Issue 2, pp 499–508 | Cite as

Maximum striking velocities in strikes with steel rods—the influence of rod length, rod mass and volunteer parameters

  • T. X. Trinh
  • S. Heinke
  • C. Rode
  • S. Schenkl
  • M. Hubig
  • G. Mall
  • Holger Muggenthaler
Original Article

Abstract

In blunt force trauma to the head caused by attacks with blunt instruments, contact forces can be estimated based on the conservation of momentum if impact velocities are known. The aims of this work were to measure maximum striking velocities and to examine the influence of rod parameters such as rod mass and length as well as volunteer parameters such as sex, age, body height, body mass, body mass index and the average amount of physical exercise. Steel rods with masses of 500, 1000 and 1500 g as well as lengths of 40, 65 and 90 cm were exemplarily tested as blunt instruments. Twenty-nine men and 22 women participated in this study. Each volunteer performed several vertical strikes with the steel rods onto a passive immobile target. Maximum striking velocities were measured by means of a Qualisys motion capture system using high-speed cameras and infrared light. Male volunteers achieved maximum striking velocities between 14.0 and 35.5 m/s whereas female volunteers achieved values between 10.4 and 28.3 m/s. Results show that maximum striking velocities increased with smaller rod masses and less consistently with higher rod lengths. Statistically significant influences were found in the volunteers’ sex and average amount of physical exercise.

Keywords

Forensic biomechanics Blunt force Striking velocities Motion analysis 

Notes

Compliance with ethical standards

The ethical committee of the University Hospital Jena gave approval to conduct this study.

Supplementary material

414_2017_1734_MOESM1_ESM.docx (11.3 mb)
ESM 1 (DOCX 11577 kb)

References

  1. 1.
    Missliwetz J (1990) Criminal circumstances and picture of intentional physical injuries (with special reference to the use of weapons). Beitr Gerichtl Med 48:299–307PubMedGoogle Scholar
  2. 2.
    Nahum AM, Melvin JW (2002) Accidental injury—biomechanics and prevention. Springer New York.  https://doi.org/10.1007/978-0-387-21787-1 Google Scholar
  3. 3.
    Adamec J, Praxl N, Schneider K, Graw M (2011) Estimation of effective mass of longish rigid instruments in head impacts. Int J Legal Med 125(6):763–771.  https://doi.org/10.1007/s00414-010-0490-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Adamec J, Mai V, Graw M, Schneider K, Hempel J-M, Schöpfer J (2013) Biomechanics and injury risk of a headbutt. Int J Legal Med 127(1):103–110.  https://doi.org/10.1007/s00414-011-0617-y CrossRefPubMedGoogle Scholar
  5. 5.
    Goldsmith W, Plunkett J (2004) A biomechanical analysis of the causes of traumatic brain injury in infants and children. Am J Forensic Med Pathol 25(2):89–100.  https://doi.org/10.1097/01.paf.0000127407.28071.63 CrossRefPubMedGoogle Scholar
  6. 6.
    Viano DS, Parenteau C (2008) Analysis of head impacts causing neck compression injury. Traffic Inj Prev 9(2):144–152.  https://doi.org/10.1080/15389580801894940 CrossRefPubMedGoogle Scholar
  7. 7.
    Yoganandan N, Pintar FA (2004) Biomechanics of temporo-parietal skull fracture. Clin Biomech 19(3):225–239.  https://doi.org/10.1016/j.clinbiomech.2003.12.014 CrossRefGoogle Scholar
  8. 8.
    Kunz SN, Adamec J (2016) Biomechanical analysis of stomping against a helmeted head. Rechtsmedizin 26(5):411–417.  https://doi.org/10.1007/s00194-016-0105-2 CrossRefGoogle Scholar
  9. 9.
    Schirmer F (2017) Biomechanische Messungen bei Kopftritten. Friedrich-Schiller-Universität Jena, DissertationGoogle Scholar
  10. 10.
    Bremer SM (2008) Forensisch-biomechanische Aspekte des Faustschlags. Ludwig-Maximilians-Universität München, DissertationGoogle Scholar
  11. 11.
    Crisco JJ, Greenwald RM, Blume JD, Penna LH (2002) Batting performance of wood and metal baseball bats. Med Sci Sports Exerc 34(10):1675–1684.  https://doi.org/10.1249/01.mss.0000031320.62025.57 CrossRefPubMedGoogle Scholar
  12. 12.
    Escamilla RF, Fleisig GS, DeRenne C, Taylor MK, Moorman CT III, Imamura R, Barakatt E, Andrews JR (2009) A comparison of age level on baseball hitting kinematics. J Appl Biomech 25(3):210–218.  https://doi.org/10.1123/jab.25.3.210 CrossRefPubMedGoogle Scholar
  13. 13.
    Kunz SN, Tutsch-Bauer E, Graw M, Adamec J (2016) Blows to the skull with a beer stein. Rechtsmedizin 26(3):189–196.  https://doi.org/10.1007/s00194-016-0089-y CrossRefGoogle Scholar
  14. 14.
    Dorfner P (2014) Analyse von Maßkrugschlägen hinsichtlich potentiell lebensgefährlicher Verletzungen. Dissertation, LMU MünchenGoogle Scholar
  15. 15.
    Sprenger FD, Siegenthaler L, Kneubuehl BP, Jackowski C (2016) The influence of striking object characteristics on the impact energy. Int J Legal Med 130(3):835–844.  https://doi.org/10.1007/s00414-015-1268-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Bundesamt S (2016) Strafverfolgung 2014. Fachserie 10, Reihe 3. In: WiesbadenGoogle Scholar
  17. 17.
    Henn V, Lignitz E, Philipp KP, Puschel K (2000) Morphology and phenomenology of death by kicking I. Arch Kriminol 205(1-2):15–24PubMedGoogle Scholar
  18. 18.
    Strauch H, Wirth I, Taymoorian U, Geserick G (2001) Kicking to death—forensic and criminological aspects. Forensic Sci Int 123(2-3):165–171.  https://doi.org/10.1016/S0379-0738(01)00542-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Statistisches Bundesamt (2014) Gesundheitswesen - Fragen zur Gesundheit - Körpermaße der Bevölkerung, Mikrozensus 2013. WiesbadenGoogle Scholar
  20. 20.
    McGinnis PM (2005) Biomechanics of sport and exercise, 2nd edn. Champaign, Illinois Human KineticsGoogle Scholar
  21. 21.
    Marieb EN, Hoehn K (2007) Human anatomy & physiology, 7th edn Pearson Benjamin CummingsGoogle Scholar
  22. 22.
    Elliott B (2006) Biomechanics and tennis. Br J Sports Med 40(5):392–396.  https://doi.org/10.1136/bjsm.2005.023150 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Girard O, Micallef JP, Millet GP (2005) Lower-limb activity during the power serve in tennis: effects of performance level. Med Sci Sports Exerc 37(6):1021–1029PubMedGoogle Scholar
  24. 24.
    Wong F, Keung JH, Lau NM, Ng DK, Chung JW, Chow DH (2014) Effects of body mass index and full body kinematics on tennis serve speed. J Hum Kinet 40(1):21–28.  https://doi.org/10.2478/hukin-2014-0003 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Söğüt M (2017) A comparison of serve speed and motor coordination between elite and club level tennis players. J Hum Kinet 55(1):171–176.  https://doi.org/10.1515/hukin-2017-0015 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Henn V, Lignitz E, Philipp KP, Puschel K (2000) Morphology and phenomenology of death by kicking II. Arch Kriminol 205(3-4):65–74PubMedGoogle Scholar
  27. 27.
    Hettinger T, Hollmann W (2000) Sportmedizin. Schattauer Stuttgart, New YorkGoogle Scholar
  28. 28.
    Egret CI, Nicolle B, Dujardin FH, Weber J, Chollet D (2006) Kinematic analysis of the golf swing in men and women experienced golfers. Int J Sports Med 27(6):463–467.  https://doi.org/10.1055/s-2005-865818 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Legal Medicine, Jena University HospitalFriedrich Schiller University JenaJenaGermany
  2. 2.Motionscience, Institute of Sport SciencesFriedrich Schiller University JenaJenaGermany

Personalised recommendations