Skip to main content
Log in

Biomechanical stress in myocardial infarctions: can endothelin-1 and growth differentiation factor 15 serve as immunohistochemical markers?

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Myocardial infarctions go along with biomechanical stress, i.e. stretching of muscle fibres, and the expression of certain marker molecules. We tested if two of those markers, endothelin-1 (ET-1) and growth differentiation factor 15 (GDF-15), can be used as immunohistochemical markers for myocardial ischaemia/infarctions. The study included experiments with an animal model, the isolated perfused Langendorff heart, as well as the investigation of human tissue samples drawn during autopsies. The overall picture of our results showed that GDF-15 is very sensitive and expressed very fast, not only as a consequence of ischaemia/infarctions, but also under other circumstances. Even an expression only caused by agony had to be discussed. ET-1, on the other hand, was less sensitive but only positive in those human cases with ischaemia/infarction that also showed typical alterations in conventional histology. Therefore, both markers did not proof to be a suitable diagnostic tool for myocardial infarctions. However, positive staining for ET-1 was also seen in rats’ hearts that suffered from arrhythmias after electric shock and in the myocardium of the right ventricle in human control cases in which a right heart failure has to be discussed. Thus, especially ET-1 should be subject of further studies that focus on these pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ortmann C, Pfeiffer H, Brinkmann B (2000) A comparative study on the immunohistochemical detection of early myocardial damage. Int J Legal Med 113:215–220

    Article  CAS  PubMed  Google Scholar 

  2. Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988. https://doi.org/10.1161/01.CIR.101.25.2981

    Article  CAS  PubMed  Google Scholar 

  3. Cleutjens JP, Kandala JC, Guarda E et al (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292

    Article  CAS  PubMed  Google Scholar 

  4. Tønnessen T, Giaid A, Saleh D et al (1995) Increased in vivo expression and production of endothelin-1 by porcine cardiomyocytes subjected to ischemia. Circ Res 76:767–772. https://doi.org/10.1161/01.RES.76.5.767

    Article  PubMed  Google Scholar 

  5. Kempf T (2006) The transforming growth factor-superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98:351–360. https://doi.org/10.1161/01.RES.0000202805.73038.48

    Article  CAS  PubMed  Google Scholar 

  6. Frank D, Kuhn C, Brors B et al (2008) Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51:309–318. https://doi.org/10.1161/HYPERTENSIONAHA.107.098046

    Article  CAS  PubMed  Google Scholar 

  7. Cummings PM, Trelka DP, Springer KM (2011) Atlas of forensic histopathology. Cambridge University Press, Cambridge; New York

    Book  Google Scholar 

  8. Thomsen H, Schulz A, Bhakdi S (1990) Immunhistochemische C5b-9-komplement-komplex-darstellung in frühstadien der herzmuskelnekrosen am paraffinschnitt. Int J Legal Med 103:199–206

    Article  CAS  Google Scholar 

  9. Bi H, Yang Y, Huang J et al (2013) Immunohistochemical detection of S100A1 in the postmortem diagnosis of acute myocardial infarction. Diagn Pathol 8:84

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sabatasso S, Mangin P, Fracasso T et al (2016) Early markers for myocardial ischemia and sudden cardiac death. Int J Legal Med 130:1265–1280. https://doi.org/10.1007/s00414-016-1401-9

    Article  PubMed  Google Scholar 

  11. Mayer F, Falk M, Huhn R et al (2016) Dityrosine as a marker of acute myocardial infarction? Experiments with the isolated Langendorff heart. Int J Legal Med 130:1053–1060. https://doi.org/10.1007/s00414-016-1376-6

    Article  CAS  PubMed  Google Scholar 

  12. Bootcov MR, Bauskin AR, Valenzuela SM et al (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci U S A 94:11514–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  14. Fairlie WD, Moore AG, Bauskin AR et al (1999) MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 65:2–5

    Article  CAS  PubMed  Google Scholar 

  15. Hsiao EC, Koniaris LG, Zimmers-Koniaris T et al (2000) Characterization of growth-differentiation factor 15, a transforming growth factor β superfamily member induced following liver injury. Mol Cell Biol 20:3742–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schernthaner C, Lichtenauer M, Wernly B et al (2017) Multibiomarker analysis in patients with acute myocardial infarction. Eur J Clin Investig 47:638–648. https://doi.org/10.1111/eci.12785

    Article  CAS  Google Scholar 

  17. Kempf T, Zarbock A, Widera C et al (2011) GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17:581–588. https://doi.org/10.1038/nm.2354

    Article  CAS  PubMed  Google Scholar 

  18. Tzikas S, Palapies L, Bakogiannis C et al (2017) GDF-15 predicts cardiovascular events in acute chest pain patients. PLoS One 12:e0182314. https://doi.org/10.1371/journal.pone.0182314

    Article  PubMed  PubMed Central  Google Scholar 

  19. Masaki T, Yanagisawa M, Goto K (1992) Physiology and pharmacology of endothelins. Med Res Rev 12:391–421

    Article  CAS  PubMed  Google Scholar 

  20. Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415. https://doi.org/10.1038/332411a0

    Article  CAS  PubMed  Google Scholar 

  21. Loennechen JP, Stoylen A, Beisvag V et al (2001) Regional expression of endothelin-1, ANP, IGF-1, and LV wall stress in the infarcted rat heart. Am J Phys 280:H2902–H2910

    CAS  Google Scholar 

  22. Oie E, Vinge LE, Tønnessen T et al (1997) Transient, isopeptide-specific induction of myocardial endothelin-1 mRNA in congestive heart failure in rats. Am J Phys 273:H1727–H1736

    CAS  Google Scholar 

  23. Tønnessen T, Lunde PK, Giaid A et al (1998) Pulmonary and cardiac expression of preproendothelin-1 mRNA are increased in heart failure after myocardial infarction in rats. Localization of preproendothelin-1 mRNA and endothelin peptide. Cardiovasc Res 39:633–643

    Article  PubMed  Google Scholar 

  24. Fishbein MC, Maclean D, Maroko PR (1978) Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol 90:57

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ono K, Matsumori A, Shioi T et al (1998) Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 98:149–156

    Article  CAS  PubMed  Google Scholar 

  26. Yue P, Massie BM, Simpson PC, Long CS (1998) Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure. Am J Physiol Heart Circ Physiol 275:H250–H258

    Article  CAS  Google Scholar 

  27. Sakai S, Miyauchi T, Kobayashi M et al (1996) Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384:353–355. https://doi.org/10.1038/384353a0

    Article  CAS  PubMed  Google Scholar 

  28. Sütsch G, Kiowski W, Yan XW et al (1998) Short-term oral endothelin-receptor antagonist therapy in conventionally treated patients with symptomatic severe chronic heart failure. Circulation 98:2262–2268

    Article  PubMed  Google Scholar 

  29. Hirata Y, Takagi Y, Fukuda Y, Marumo F (1989) Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 78:225–228

    Article  CAS  PubMed  Google Scholar 

  30. Takuwa N, Takuwa Y, Yanagisawa M et al (1989) A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J Biol Chem 264:7856–7861

    CAS  PubMed  Google Scholar 

  31. Ito H, Hirata Y, Hiroe M et al (1991) Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res 69:209–215

    Article  CAS  PubMed  Google Scholar 

  32. Molenaar P, O’reilly G, Sharkey A et al (1993) Characterization and localization of endothelin receptor subtypes in the human atrioventricular conducting system and myocardium. Circ Res 72:526–538

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki T, Kumazaki T, Mitsui Y (1993) Endothelin-1 is produced and secreted by neonatal rat cardiac myocytes in vitro. Biochem Biophys Res Commun 191:823–830. https://doi.org/10.1006/bbrc.1993.1291

    Article  CAS  PubMed  Google Scholar 

  34. Ito H, Hirata Y, Adachi S et al (1993) Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92:398–403. https://doi.org/10.1172/JCI116579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan Y, Li S, Li X-L et al (2016) Plasma endothelin-1 level as a predictor for poor collaterals in patients with ≥95% coronary chronic occlusion. Thromb Res 142:21–25. https://doi.org/10.1016/j.thromres.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  36. Skovsted GF, Kruse LS, Berchtold LA et al (2017) Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat. PLoS One 12:e0174119. https://doi.org/10.1371/journal.pone.0174119

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shirai N, Naruko T, Ohsawa M et al (2006) Expression of endothelin-converting enzyme, endothelin-1 and endothelin receptors at the site of percutaneous coronary intervention in humans. J Hypertens 24:711–721. https://doi.org/10.1097/01.hjh.0000217854.97369.8c

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falk, M., Huhn, R., Behmenburg, F. et al. Biomechanical stress in myocardial infarctions: can endothelin-1 and growth differentiation factor 15 serve as immunohistochemical markers?. Int J Legal Med 132, 509–518 (2018). https://doi.org/10.1007/s00414-017-1726-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1726-z

Keywords

Navigation