Full-gene haplotypes refine CYP2D6 metabolizer phenotype inferences

  • Frank R. Wendt
  • Antti Sajantila
  • Rodrigo S. Moura-Neto
  • August E. Woerner
  • Bruce Budowle
Original Article

Abstract

CYP2D6 is a critical pharmacogenetic target, and polymorphisms in the gene region are commonly used to infer enzyme activity score and predict resulting metabolizer phenotype: poor, intermediate, extensive/normal, or ultrarapid which can be useful in determining cause and/or manner of death in some autopsies. Current genotyping approaches are incapable of identifying novel and/or rare variants, so CYP2D6 star allele definitions are limited to polymorphisms known a priori. While useful for most predictions, recent studies using massively parallel sequencing data have identified additional polymorphisms in CYP2D6 that are predicted to alter enzyme function but are not considered in current star allele nomenclature. The 1000 Genomes Project data were used to produce full-gene haplotypes, describe their distribution in super-populations, and predict enzyme activity scores. Full-gene haplotypes generated lower activity scores than current approaches due to inclusion of additional damaging polymorphisms in the star allele. These findings are critical for clinical implementation of metabolizer phenotype prediction because a fraction of the population may be incorrectly considered normal metabolizers but actually may be poor or intermediate metabolizers.

Keywords

CYP2D6 Full-gene haplotypes Metabolizer phenotype Massively parallel sequencing 

Supplementary material

414_2017_1709_MOESM1_ESM.docx (225 kb)
ESM 1 (DOCX 225 kb)
414_2017_1709_MOESM2_ESM.xlsx (18.4 mb)
ESM 2 (XLSX 18845 kb)

References

  1. 1.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526 Review CrossRefPubMedGoogle Scholar
  2. 2.
    Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 5(1):6–13 Review CrossRefPubMedGoogle Scholar
  3. 3.
    Smith HS (2009) Opioid metabolism. Mayo Clin Proc 84(7):613–624.  https://doi.org/10.1016/S0025-6196(11)60750-7 ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368(9536):704CrossRefPubMedGoogle Scholar
  5. 5.
    Koch WH (2004) Technology platforms for pharmacogenomic diagnostic assays. Nat Rev Drug Discov 3(9):749–761 Review CrossRefPubMedGoogle Scholar
  6. 6.
  7. 7.
    Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS (2017) Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med 19(1):69–76.  https://doi.org/10.1038/gim.2016.80 CrossRefPubMedGoogle Scholar
  8. 8.
    Koski A, Ojanperä I, Sistonen J, Vuori E, Sajantila AA (2007) Fatal doxepin poisoning associated with a defective CYP2D6 genotype. Am J Forensic Med Pathol 28(3):259–261CrossRefPubMedGoogle Scholar
  9. 9.
    Koski A, Sistonen J, Ojanperä I, Gergov M, Vuori E, Sajantila A (2006) CYP2D6 and CYP2C19 genotypes and amitriptyline metabolite ratios in a series of medicolegal autopsies. Forensic Sci Int 158(2–3):177–183CrossRefPubMedGoogle Scholar
  10. 10.
    Kerr GW, McGuffie AC, Wilkie S (2001) Tricyclic antidepressant overdose: a review. Emerg Med J 18(4):236–241 Review CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Karlsson L, Zackrisson AL, Josefsson M, Carlsson B, Green H, Kugelberg FC (2015) Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases. Pharmacogenomics J 15(2):165–171.  https://doi.org/10.1038/tpj.2014.50 CrossRefPubMedGoogle Scholar
  12. 12.
    Wendt FR, Pathak G, Sajantila A, Chakraborty R, Budowle B (2017) Global genetic variation of select opiate metabolism genes in self-reported healthy individuals. Pharmacogenomics J.  https://doi.org/10.1038/tpj.2017.13
  13. 13.
  14. 14.
    Karolchik D, Hinrichs AS, Kent WJ (2012;Chapter 1:Unit1.4) The UCSC genome browser. Curr Protoc Bioinformatics.  https://doi.org/10.1002/0471250953.bi0104s40
  15. 15.
    Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74.  https://doi.org/10.1038/nature15393 CrossRefGoogle Scholar
  16. 16.
    IGSR and the 1000 Genomes Project frequently asked questions web page. http://www.internationalgenome.org/faq/are-1000-genomes-variant-calls-phased/. Accessed 14JUN2017
  17. 17.
    Zhou SF, Di YM, Chan E, Du YM, Chow VD, Xue CC, Lai X, Wang JC, Li CG, Tian M, Duan W (2008) Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 9(8):738–784 Review CrossRefPubMedGoogle Scholar
  18. 18.
    Gaedigk A, Bhathena A, Ndjountché L, Pearce RE, Abdel-Rahman SM, Alander SW, Bradford LD, Rogan PK, Leeder JS (2005) Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. Pharmacogenomics J 5(3):173–182 Erratum in: Pharmacogenomics J. 2005;5(4):276. Rogan, PK [added]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Genetic Data Analysis Software. Lewis and Zaykin. 1999.Google Scholar
  20. 20.
    Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  21. 21.
  22. 22.
    RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/ Google Scholar
  23. 23.
    Population Analysis with Reticulate Trees (PopART). Developed by Jessica Leigh, David Bryant, and Mike Steel. http://popart.otago.ac.nz
  24. 24.
    Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS (2008) The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83(2):234–242CrossRefPubMedGoogle Scholar
  25. 25.
    McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The Ensembl Variant Effect Predictor. Genome Biol 17(1):122.  https://doi.org/10.1186/s13059-016-0974-4 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081.  https://doi.org/10.1038/nprot.2009.86 CrossRefPubMedGoogle Scholar
  27. 27.
    Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80 Review CrossRefPubMedGoogle Scholar
  28. 28.
    Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ng PC, Henikoff S (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res 12(3):436–446CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11(5):863–874CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249.  https://doi.org/10.1038/nmeth0410-248 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Adzhubei I, Jordan DM, Sunyaev SR (2013;Chapter 7:Unit7.20) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet.  https://doi.org/10.1002/0471142905.hg0720s76
  33. 33.
    Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7(10):e46688.  https://doi.org/10.1371/journal.pone.0046688 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747.  https://doi.org/10.1093/bioinformatics/btv195 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Choi Y (2012) A fast computation of pairwise sequence alignment scores between a protein and a set of single-locus variants of another protein. In Proceedings of the ACM conference on bioinformatics, computational biology and biomedicine (BCB '12). ACM, New York, 414–417Google Scholar
  36. 36.
    Sakuyama K, Sasaki T, Ujiie S, Obata K, Mizugaki M, Ishikawa M, Hiratsuka M (2008) Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab Dispos 36(12):2460–2467.  https://doi.org/10.1124/dmd.108.023242 CrossRefPubMedGoogle Scholar
  37. 37.
    Marez D, Legrand M, Sabbagh N, Lo Guidice JM, Spire C, Lafitte JJ, Meyer UA, Broly F (1997) Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 7(3):193–202CrossRefPubMedGoogle Scholar
  38. 38.
    Sachse C, Brockmöller J, Bauer S, Roots I (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60(2):284–295PubMedPubMedCentralGoogle Scholar
  39. 39.
    Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67.  https://doi.org/10.1093/nar/gkp215 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wennerholm A, Johansson I, Hidestrand M, Bertilsson L, Gustafsson LL, Ingelman-Sundberg M (2001) Characterization of the CYP2D6*29 allele commonly present in a black Tanzanian population causing reduced catalytic activity. Pharmacogenetics 11(5):417–427 Erratum in: Pharmacogenetics 2001 Nov;11(8):743CrossRefPubMedGoogle Scholar
  41. 41.
    Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, Liu X (2015) Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet 24(8):2125–2137.  https://doi.org/10.1093/hmg/ddu733. CrossRefPubMedGoogle Scholar
  42. 42.
    Lim ET, Würtz P, Havulinna AS, Palta P, Tukiainen T, Rehnström K, Esko T, Mägi R, Inouye M, Lappalainen T et al (2014) Sequencing Initiative Suomi (SISu) Project. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet 10(7):e1004494.  https://doi.org/10.1371/journal.pgen.1004494 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Peltonen L, Jalanko A, Varilo T (1999) Molecular genetics of the Finnish disease heritage. Hum Mol Genet 8(10):1913–1923 Review CrossRefPubMedGoogle Scholar
  44. 44.
    Kere J (2001) Human population genetics: lessons from Finland. Annu Rev Genomics Hum Genet 2:103–128 Review CrossRefPubMedGoogle Scholar
  45. 45.
    Palo JU, Ulmanen I, Lukka M, Ellonen P, Sajantila A (2009) Genetic markers and population history: Finland revisited. Eur J Hum Genet 17(10):1336–1346.  https://doi.org/10.1038/ejhg.2009.53 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, Altshuler DM (2006) International HapMap Consortium. Common deletion polymorphisms in the human genome. Nat Genet 38(1):86–92CrossRefPubMedGoogle Scholar
  47. 47.
    Drögemöller BI, Wright GE, Niehaus DJ, Emsley R, Warnich L (2013) Next-generation sequencing of pharmacogenes: a critical analysis focusing on schizophrenia treatment. Pharmacogenet Genomics 23(12):666–674.  https://doi.org/10.1097/FPC.0000000000000006 CrossRefPubMedGoogle Scholar
  48. 48.
    Wright GE, Carleton B, Hayden MR, Ross CJ (2016) The global spectrum of protein-coding pharmacogenomic diversity. Pharmacogenomics J.  https://doi.org/10.1038/tpj.2016.77
  49. 49.
    Contreras AV, Monge-Cazares T, Alfaro-Ruiz L, Hernandez-Morales S, Miranda-Ortiz H, Carrillo-Sanchez K, Jimenez-Sanchez G, Silva-Zolezzi I (2011) Resequencing, haplotype construction and identification of novel variants of CYP2D6 in Mexican Mestizos. Pharmacogenomics 12(5):745–756.  https://doi.org/10.2217/pgs.11.8 CrossRefPubMedGoogle Scholar
  50. 50.
    Beoris M, Amos Wilson J, Garces JA, Lukowiak AA (2016) CYP2D6 copy number distribution in the US population. Pharmacogenet Genomics 26(2):96–99.  https://doi.org/10.1097/FPC.0000000000000188 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M (1996) Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 278(1):441–446PubMedGoogle Scholar
  52. 52.
    Bertilsson L, Dahl ML, Dalén P, Al-Shurbaji A (2002) Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 53(2):111–122 Review CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Feng Y, Zhang Y, Ying C, Wang D, Nanopore-based DC (2015) Fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics 13(1):4–16.  https://doi.org/10.1016/j.gpb.2015.01.009 Review. Erratum in: Genomics Proteomics Bioinformatics. 2015 Dec;13(6):383. Genomics Proteomics Bioinformatics. 2015 Jun;13(3):200-201CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang D, Papp AC, Sun X (2015) Functional characterization of CYP2D6 enhancer polymorphisms. Hum Mol Genet 24(6):1556–1562.  https://doi.org/10.1093/hmg/ddu566 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Frank R. Wendt
    • 1
    • 2
  • Antti Sajantila
    • 3
  • Rodrigo S. Moura-Neto
    • 4
  • August E. Woerner
    • 1
    • 2
  • Bruce Budowle
    • 1
    • 2
    • 5
  1. 1.Center for Human IdentificationUniversity of North Texas Health Science CenterFort WorthUSA
  2. 2.Graduate School of Biomedical SciencesUniversity of North Texas Health Science CenterFort WorthUSA
  3. 3.Laboratory of Forensic Biology, Department of Forensic MedicineUniversity of HelsinkiHelsinkiFinland
  4. 4.Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Center of Excellence in Genomic Medicine (CEGMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations