International Journal of Legal Medicine

, Volume 132, Issue 2, pp 487–497 | Cite as

A valid method to determine the site of drowning

  • Rafael Carballeira
  • Duarte N. Vieira
  • Manuel Febrero-Bande
  • José I. Muñoz Barús
Original Article


The diatom test is considered a useful aid in determining the site of death from drowning. Nevertheless, there is disagreement within the scientific community concerning its reliability, and its findings have been challenged and sometimes overturned in courts of law. Using a model based on animal experimentation, we have developed a diatom test to discriminate between the locations of drowning sites from different aquatic systems. We carried out a complementary combination of quantitative and qualitative analyses together with a statistical analysis based on the Kullback-Leibler distance of the samples. A restrictive selection of exclusive diatom species from each reservoir was also made. This approach allowed us to validate the usefulness of the diatom test in determining the location of the site of drowning.


Drowning Diatom test Site of drowning Forensic pathology 



We wish to thank Demarcaciones Hidrográficas del Duero, Cantábrico, Miño-Sil, Galicia-Costa, and Augas de Galicia of the Autonomous Government of Xunta de Galicia for providing information on diatom communities in Galician rivers. Thanks also to the Instituto José Cornide de Estudios Coruñeses for providing the unpublished documents of López-Seoane (1893) and thanks to V. Reynolds for his support.

Funding Information

Rafael Carballeira is grateful for the financial support (2012–2013) of the Instituto de Ciencias Forenses “Luis Concheiro Carro” (USC) and for the Galician research plan innovation and development 2011–2015 (Plan I2C) of the autononamous Government Xunta de Galicia and co-financed by European Social Fund. The research of Manuel Febrero-Bande is partially supported by MTM2016-76969-P (Spanish State Research Agency, AEI) and co-funded by the European Regional Development Fund (ERDF).

Supplementary material

414_2017_1708_MOESM1_ESM.docx (111 kb)
Online Resource 1 (DOCX 111 kb)
414_2017_1708_MOESM2_ESM.docx (99 kb)
Online Resource 2 (DOCX 98 kb)
414_2017_1708_MOESM3_ESM.docx (138 kb)
Online Resource 3 (DOCX 138 kb)


  1. 1.
    Timperman JP (1972) The diagnosis of drowning—a review. Forensic Sci Int 1:397–469CrossRefGoogle Scholar
  2. 2.
    Pollanen MS (1998a) Diatoms and homicide. Forensic Sci Int 91:29–34CrossRefPubMedGoogle Scholar
  3. 3.
    Pollanen MS (1998b) Forensic diatomology and drowning. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Ludes B, Coste M, North N, Mangin P (1996a) Intérêt de l’étude de la flore des diatomées du lieu de submersion dans le diagnostic de noyade. Bull Fr Pêche Piscic 341/342:133–137CrossRefGoogle Scholar
  5. 5.
    Ludes B, Coste M, Tracqui A, Mangin P (1996b) Continuous river monitoring of the diatoms in the diagnosis of drowning. J Forensic Sci 41:425–428CrossRefPubMedGoogle Scholar
  6. 6.
    Ludes B, Coste M, North N, Doray S, Tracqui A, Kintz P (1999) Diatom analysis in victim’s tissues as an indicator of the site of drowning. Int J Legal Med 112:163–166CrossRefPubMedGoogle Scholar
  7. 7.
    Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063CrossRefPubMedGoogle Scholar
  8. 8.
    Mann DG, Vanormelingen P (2013) An inordinate fordness? The number, distributions, and origin of diatom species. J Eukaryot Microbiol 60:414–420CrossRefPubMedGoogle Scholar
  9. 9.
    Smol SP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge, 2nd edition, pp 552Google Scholar
  11. 11.
    Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Hürlimann J, Feer P, Elber F, Niederberger K, Dirnhofer R, Wyler D (2000) Diatom detection in the diagnosis of death by drowning. Int J Legal Med 114:6–14CrossRefPubMedGoogle Scholar
  13. 13.
    Horton BP, Boreham S, Hillier C (2006) The development and application of a diatom-based quantitative reconstruction technique in forensic science. J Forensic Sci 51:643–650CrossRefPubMedGoogle Scholar
  14. 14.
    Siver PA, Lord WD, McCarthy DJ (1994) Forensic limnology: the use of freshwater algal community ecology to link suspects to an aquatic crime scene in southern New England. J Forensic Sci 39:847–853CrossRefGoogle Scholar
  15. 15.
    Coelho S, Ramos P, Ribeiro C, Marques J, Santos A (2016) Contribution to the determination of the place of death by drowning—a study of diatoms’ biodiversity in Douro river estuary. J Forensic Legal Med 41:58–64CrossRefGoogle Scholar
  16. 16.
    Ütermohl H (1958) Zur Vervollkommnung der quantitative phytoplankton-Methodik. Mitt Int Ver Limnol 9:1–38Google Scholar
  17. 17.
    Krammer K, Lange-Bertalot H (2000) Bacillariophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasser flora von Mitteleuropa, Band 2/1–4. Gustav Fischer Verlag, Stuttgart, pp 1–4Google Scholar
  18. 18.
    Lange-Bertalot H (2000-2016) Diatoms of the European inland waters and comparable habitats, Vol. 1-8. A.R.G. Gantner Verlag, Ruggell, RuggellGoogle Scholar
  19. 19.
    Hofmann G, Werum M, Lange-Bertalot H (2011) Diatomeen im Süsswasser-Benthos von Mitteleuropa: Bestimmungsflora Kieselalgen für die ökologische Praxis über 700 der häufigsten Arten und ihre Ökologie. A.R.G. Gantner Verlag, Ruggell, RuggellGoogle Scholar
  20. 20.
    Ranner G, Juan H, Udermann H (1982) Zum Beweiswert von Diatomeen im Knochenmark beim Ertrinkungstod. Z Rechtsmed 88:57–65PubMedGoogle Scholar
  21. 21.
    Kater W (1987) Vergleichende Diatomeenanalysen zur Differenzierung der Todesumstände bei im Wasser gefundenen Leiche. Dissertation, J.W. Goethe-Universität, FrankfurtGoogle Scholar
  22. 22.
    Di Giancamillo A, Domeneghini C, Gibelli D, Cattaneo C (2011) Diatom extraction with HCl from animal tissues: a technical note. Legal Med 13:268–271CrossRefGoogle Scholar
  23. 23.
    R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  24. 24.
    McCullagh P, Nelder, JA (1989) Generalized linear models. Chapman & HallGoogle Scholar
  25. 25.
    López-Seoane V. (1893) Diatomeas de Galicia. Fondo documental del Instituto José de Cornide de Estudios Coruñeses, (unpublished)Google Scholar
  26. 26.
    Tomàs X (1988) Diatomeas de las aguas epicontinentales saladas del litoral mediterráneo de la Península Ibérica. Ph. D. Thesis Dissertation. University of BarcelonaGoogle Scholar
  27. 27.
    Varela M, Rodríguez B, Costas E (1991) Inventario de diatomeas de auga doce de Galicia. Cadernos da área de Ciencias Biolóxicas (Inventarios) do Seminario de Estudos Galegos, Vol. IX, SadaGoogle Scholar
  28. 28.
    Aboal M, Álvarez Cobelas M, Cambra J, Ector, L. (2003) Floristic list of non-marine diatoms (Bacillariophyceae) of Iberian Peninsula, Balearic Islands and Canary Islands. Updated taxonomy and bibliography. Diatom Monographs, 4. A.R.G. Gantner Verlag, RuggellGoogle Scholar
  29. 29.
    Pardo I, Abraín R, Gómez-Rodríguez C, García-Roselló E (2010) Tipología de ríos y conformidad con las comunidades biológicas en el ámbito de las Confederaciones Hidrográficas del Cantábrico y Miño – Sil. Convenio entre la Universidad de Vigo y las Confederaciones Hidrográficas del Cantábrico y Miño-Sil. 28 + XI ppGoogle Scholar
  30. 30.
    Delgado C (2011) Benthic diatoms of Atlantic and Mediterranean Spanish rivers: ecology and bioindication. Ph. D. Thesis Dissertation. University of VigoGoogle Scholar
  31. 31.
    Novais MH, Blanco S, Morais M, Hoffman L, Ector L (2015) Catalogue of continental diatoms from Portugal, including the archipelagos of Azores and Madeira: update nomenclature, distribution and bibliography. In: Diatom monographs (Witkowski, A., ed.), 17A–C: pp 1307Google Scholar
  32. 32.
    Margalef R (1983) Limnología. Ediciones Omega, S.A., BarcelonaGoogle Scholar
  33. 33.
    Wetzel RG (2001) Limnology: lake and river ecosystems. Elsevier Academic Press, San DiegoGoogle Scholar
  34. 34.
    Revenstorf V (1904) Der nachweis der aspirierten ertrankungs flussigkeits als kriterium des todes duch ertrinken. Vierteljahresschs Geritchtl Med Of Sanitaetswes 28:274–279Google Scholar
  35. 35.
    Pollanen MS (1997) The diagnosis value of the diatom test for drowning, II. Validity: analysis of diatoms in bone marrow and drowning medium. J Forensic Sci 42:286–290PubMedGoogle Scholar
  36. 36.
    Pollanen MS, Cheug C, Chiasson DA (1997) The diagnosis value of the diatom test for drowning, I. Utility: a retrospective analysis of 771 cases of drowning in Ontario, Canada. J Forensic Sci 42:281–285PubMedGoogle Scholar
  37. 37.
    Xu G, Hu B, Shen R, Pan X, Zhou X (2012) Applications for drowning identification by planktonic diatom test on rats in forensic medicine. Procedia Eng 18:417–421CrossRefGoogle Scholar
  38. 38.
    Buhtz BW, Burkhardt W (1938) Die Feststellung des Ertränkungsortes aus dem Diatomeenbefund der Lungen. Dtsch Z Ges Gerichtl Med 29:469–484Google Scholar
  39. 39.
    Peabody JA (1977) Diatoms in forensic science. J Forensic Sci Soc 17:81–87CrossRefGoogle Scholar
  40. 40.
    Geissler U, Gerloff J (1966) Das Vorkommen von Diatomeen in menschlichen Organen und in der Luft. Nova Hedwigia 10:565–577Google Scholar
  41. 41.
    Rumrich U, Lange-Bertalot H, Rumrich M (1990) Tod durch Ertrinken. Eine Methode zur kritischen Differenzierung mit Hilfe von Diatomeen Kriminalistik 6:325–330Google Scholar
  42. 42.
    Schneider V, Kolb K (1969) Über den Nachweis von radioaktiv marketieren Diatomeen in den Organen. Beitr Gerichtl Med 25:158PubMedGoogle Scholar
  43. 43.
    Lunetta P, Penttilä A, Hällfors G (1998) Scanning and transmission electron microscopical evidence of the capacity of diatom to penetrate the alveolo-capillary barrier in drowning. Int J Legal Med 111:229–237CrossRefPubMedGoogle Scholar
  44. 44.
    Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  45. 45.
    Horton BP, Edwards RJ (2005) The application of local and regional transfer functions to the reconstruction of Holocene sea levels, North Norfolk, England. The Holocene 15:216–228CrossRefGoogle Scholar
  46. 46.
    Auer A (1991) Qualitative diatom analysis as a tool to diagnose drowning. Am J Forensic Med Pathol 12:213–218CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Forensic SciencesUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Botany, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Department of Forensic Medicine, Ethics and Medical Law, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Area of Statistics and Operations Research, Faculty of MathematicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  5. 5.Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, PediatricsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations