Skip to main content
Log in

Determining the optimal forensic DNA analysis procedure following investigation of sample quality

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Crime scene traces of various types are routinely sent to forensic laboratories for analysis, generally with the aim of addressing questions about the source of the trace. The laboratory may choose to analyse the samples in different ways depending on the type and quality of the sample, the importance of the case and the cost and performance of the available analysis methods. Theoretically well-founded guidelines for the choice of analysis method are, however, lacking in most situations. In this paper, it is shown how such guidelines can be created using Bayesian decision theory. The theory is applied to forensic DNA analysis, showing how the information from the initial qPCR analysis can be utilized. It is assumed the alternatives for analysis are using a standard short tandem repeat (STR) DNA analysis assay, using the standard assay and a complementary assay, or the analysis may be cancelled following quantification. The decision is based on information about the DNA amount and level of DNA degradation of the forensic sample, as well as case circumstances and the cost for analysis. Semi-continuous electropherogram models are used for simulation of DNA profiles and for computation of likelihood ratios. It is shown how tables and graphs, prepared beforehand, can be used to quickly find the optimal decision in forensic casework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Butler JM (2012) Advanced topics in forensic DNA typing: methodology. Elsevier/Academic Press, San Diego

    Google Scholar 

  2. Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J (2000) An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int 112:17–40. doi:10.1016/S0379-0738(00)00158-4

    Article  CAS  Google Scholar 

  3. Kloosterman AD, Kersbergen P (2003) Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci. J Soc Biol 197:351–359

    Article  CAS  Google Scholar 

  4. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064. doi:10.1520/JFS2003043

    CAS  Google Scholar 

  5. Holt A, Wootton SC, Mulero JJ, Brzoska PM, Langit E, Green RL (2016) Developmental validation of the Quantifiler HP and trio kits for human DNA quantification in forensic samples. Forensic Sci Int Genet 21:145–157. doi:10.1016/j.fsigen.2015.12.007

    Article  CAS  Google Scholar 

  6. Tucker VC, Hopwood AJ, Sprecher CJ, McLaren RS, Rabbach DR, Ensenberger MG, Thompson JM, Storts DR (2011) Developmental validation of the PowerPlex ESI 16 and PowerPlex ESI 17 systems: STR multiplexes for the new European standard. Forensic Sci Int Genet 5:436–448. doi:10.1016/j.fsigen.2010.09.004

    Article  CAS  Google Scholar 

  7. Tucker VC, Hopwood AJ, Sprecher CJ, McLaren RS, Rabbach DR, Ensenberger MG, Thompson JM, Storts DR (2012) Developmental validation of the PowerPlex ESX 16 and PowerPlex ESX 17 systems. Forensic Sci Int Genet 6:124–131. doi:10.1016/j.fsigen.2011.03.009

    Article  CAS  Google Scholar 

  8. Gittelson S, Bozza S, Biedermann A, Taroni F (2013) Decision-theoretic reflections on processing a fingermark. Forensic Sci Int 226:42–47. doi:10.1016/j.forsciint.2013.01.019

    Article  Google Scholar 

  9. Biedermann A, Bozza S, Garbolino P, Taroni F (2012) Decision-theoretic analysis of forensic sampling criteria using Bayesian decision networks. Forensic Sci Int 223:217–227. doi:10.1016/j.forsciint.2012.09.003

    Article  CAS  Google Scholar 

  10. Gittelson S, Steffen CR, Coble MD (2016) Low-template DNA: a single DNA analysis or two replicates? Forensic Sci Int 264:139–145. doi:10.1016/j.forsciint.2016.04.012

    Article  CAS  Google Scholar 

  11. Taroni F, Bozza S, Bernard M, Champod C (2007) Value of DNA tests: a decision perspective. J Forensic Sci 52:31–39. doi:10.1111/j.1556-4029.2006.00302.x

    Article  Google Scholar 

  12. Tillmar AO, Mostad P (2014) Choosing supplementary markers in forensic casework. Forensic Sci Int Genet 13:128–133. doi:10.1016/j.fsigen.2014.06.019

    Article  CAS  Google Scholar 

  13. Mazumder A (2010) Planning in forensic DNA identification using probabilistic expert systems. Dissertation, Department of Statistics, University of Oxford

  14. Ceci SJ, Friedman RD (2000) The suggestibility of children: scientific research and legal implications. Cornell L Rev 86:33–108

    Google Scholar 

  15. Taroni F, Bozza S, Biedermann A, Garbolino P, Aitken C (2010) Data analysis in forensic science: a Bayesian decision perspective. Wiley, Chichester

    Book  Google Scholar 

  16. Quantifiler HP, Trio DNA Quantification kits user guide, revision C. Thermo Fisher Scientific, Waltham

  17. Gill P, Gusmão L, Haned H, Mayr WR, Morling N, Parson W, Prieto L, Prinz M, Schneider H, Schneider PM, Weir BS (2012) DNA commission of the International Society of Forensic Genetics: recommendations on the evaluation of STR typing results that may include drop-out and/or drop-in using probabilistic methods. Forensic Sci Int Genet 6:679–688. doi:10.1016/j.fsigen.2012.06.002

    Article  CAS  Google Scholar 

  18. Tvedebrink T, Eriksen PS, Mogensen HS, Morling N (2012) Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out. Forensic Sci Int Genet 6:97–101. doi:10.1016/j.fsigen.2011.03.001

    Article  CAS  Google Scholar 

  19. van Oorschot RAH, Ballantyne KN, Mitchell JR (2010) Forensic trace DNA: a review. Investig Genet 1:14. doi:10.1186/2041-2223-1-14

    Article  Google Scholar 

  20. Haned H, Slooten K, Gill P (2012) Exploratory data analysis for the interpretation of low template DNA mixtures. Forensic Sci Int Genet 6:762–774. doi:10.1016/j.fsigen.2012.08.008

    Article  CAS  Google Scholar 

  21. Balding DJ, Buckleton J (2009) Interpreting low template DNA profiles. Forensic Sci Int Genet 4:1–10. doi:10.1016/j.fsigen.2009.03.003

    Article  CAS  Google Scholar 

  22. Tvedebrink T, Eriksen PS, Asplund M, Mogensen HS, Morling N (2012) Allelic drop-out probabilities estimated by logistic regression - further considerations and practical implementation. Forensic Sci Int Genet 6:263–267. doi:10.1016/j.fsigen.2011.06.004

    Article  CAS  Google Scholar 

  23. Stan Development Team (2016) RStan: the R interface to Stan. R package version 2.14.1. http://mc-stan.org

  24. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian Data Analysis, second edn. Chapman and Hall, London

    Google Scholar 

  25. Vehtari A, Gelman A, Gabry J (2016) Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. J Stat Comput. doi:10.1007/s11222-016-9696-4

  26. Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

    Google Scholar 

  27. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  28. Kelly H, Bright JA, Buckleton JS, Curran JM (2014) A comparison of statistical models for the analysis of complex forensic DNA profiles. Sci Justice 54:66–70. doi:10.1016/j.scijus.2013.07.003

    Article  Google Scholar 

  29. Curran J, Gill P, Bill MR (2015) Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Sci Int 148:47–53. doi:10.1016/j.forsciint.2004.04.077

    Article  Google Scholar 

  30. Albinsson L, Norén L, Hedell R, Ansell R (2011) Swedish population data and concordance for the kits PowerPlex ESX 16 system, PowerPlex ESI 16 system, AmpFlSTR NGM, AmpFlSTR SGM plus and investigator ESSplex. Forensic Sci Int Genet 5:89–92. doi:10.1016/j.fsigen.2010.11.005

    Article  Google Scholar 

  31. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, Second edn. Springer-Verlag, New York

    Book  Google Scholar 

  32. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  33. Kruijver M (2015) Efficient computations with the likelihood ratio distribution. Forensic Sci Int Genet 14:116–124. doi:10.1016/j.fsigen.2014.09.018

    Article  Google Scholar 

Download references

Acknowledgements

Lina Boiso and Malin Sanga at the Swedish National Forensic Centre are acknowledged for laboratory work and for compilation of data. RH was partly financed by the Swedish Civil Contingencies Agency (MSB), project: MSB-SäkProv.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Hedell.

Electronic supplementary material

ESM 1

(TXT 41 kb)

ESM 2

(TXT 2 kb)

ESM 3

(TXT 27 kb)

ESM 4

(TXT 6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedell, R., Hedman, J. & Mostad, P. Determining the optimal forensic DNA analysis procedure following investigation of sample quality. Int J Legal Med 132, 955–966 (2018). https://doi.org/10.1007/s00414-017-1635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1635-1

Keywords

Navigation