International Journal of Legal Medicine

, Volume 132, Issue 2, pp 353–359 | Cite as

Usefulness of telomere length in DNA from human teeth for age estimation

  • Ana Belén Márquez-Ruiz
  • Lucas González-Herrera
  • Aurora Valenzuela
Original Article

Abstract

Age estimation is widely used to identify individuals in forensic medicine. However, the accuracy of the most commonly used procedures is markedly reduced in adulthood, and these methods cannot be applied in practice when morphological information is limited. Molecular methods for age estimation have been extensively developed in the last few years. The fact that telomeres shorten at each round of cell division has led to the hypothesis that telomere length can be used as a tool to predict age. The present study thus aimed to assess the correlation between telomere length measured in dental DNA and age, and the effect of sex and tooth type on telomere length; a further aim was to propose a statistical regression model to estimate the biological age based on telomere length. DNA was extracted from 91 tooth samples belonging to 77 individuals of both sexes and 15 to 85 years old and was used to determine telomere length by quantitative real-time PCR. Our results suggested that telomere length was not affected by sex and was greater in molar teeth. We found a significant correlation between age and telomere length measured in DNA from teeth. However, the equation proposed to predict age was not accurate enough for forensic age estimation on its own. Age estimation based on telomere length in DNA from tooth samples may be useful as a complementary method which provides an approximate estimate of age, especially when human skeletal remains are the only forensic sample available.

Keywords

Age estimation Teeth Telomere length Quantitative real-time PCR 

Notes

Acknowledgments

Appreciation is expressed to the Biopsia líquida y metástasis and Genética de las hemopatías malignas y complicaciones asociadas research groups from GENYO (Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica) for their technical support. We also thank Dr. Alfonso Varela-López for his methodological expertise and scientific advice and K. Shashok for improving the use of English in the manuscript. The authors also acknowledge funding from CEIFA (Centro para la Excelencia en Investigación Forense en Andalucía). This research was supported by an FPU (Formación de Profesorado Universitario) grant from the Spanish Ministry of Education, Culture and Sports to Ana Belén Márquez-Ruiz (FPU13/03543).

Compliance with ethical standards

The research protocol was approved by the Ethics Committee for Human Research of the University of Granada (Spain), and the study was conducted in accordance with the ethical standards laid down by the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cunha E, Baccino E, Martrille L et al (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193:1–13. doi: 10.1016/j.forsciint.2009.09.008 CrossRefPubMedGoogle Scholar
  2. 2.
    Meissner C, Ritz-Timme S (2010) Molecular pathology and age estimation. Forensic Sci Int 203:34–43. doi: 10.1016/j.forsciint.2010.07.010 CrossRefPubMedGoogle Scholar
  3. 3.
    Zapico SC, Ubelaker DH (2013) Applications of physiological bases of ageing to forensic sciences. Estimation of age-at-death. Ageing Res Rev 12:605–617. doi: 10.1016/j.arr.2013.02.002 CrossRefGoogle Scholar
  4. 4.
    Lee HY, Lee SD, Shin KJ (2016) Forensic DNA methylation profiling to obtain investigative leads from evidence material. BMB Rep 49:17–18. doi: 10.5483/BMBRep.2016.49.7.070 Google Scholar
  5. 5.
    Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27:375–382. doi: 10.1016/0531-5565(92)90068-B CrossRefPubMedGoogle Scholar
  6. 6.
    Bernadotte A, Mikhelson VM, Spivak IM (2016) Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging 8:3–11. doi: 10.18632/aging.100871 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. doi: 10.1016/j.cell.2013.05.039 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tsuji A, Ishiko A, Takasaki T, Ikeda N (2002) Estimating age of humans based on telomere shortening. Forensic Sci Int 126:197–199. doi: 10.1016/S0379-0738(02)00086-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Takasaki T, Tsuji A, Ikeda N, Ohishi M (2003) Age estimation in dental pulp DNA based on human telomere shortening. Int J Legal Med 117:232–234. doi: 10.1007/s00414-003-0376-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Karlsson AO, Svensson A, Marklund A, Holmlund G (2008) Estimating human age in forensic samples by analysis of telomere repeats. Forensic Science International: Genetics Supplement Series 1:569–571. doi: 10.1016/j.fsigss.2007.10.153 Google Scholar
  11. 11.
    Hewakapuge S, van Oorschot RAH, Lewandowski P, Baindur-Hudson S (2008) Investigation of telomere lengths measurement by quantitative real-time PCR to predict age. Legal Med 10:236–242. doi: 10.1016/j.legalmed.2008.01.007 CrossRefPubMedGoogle Scholar
  12. 12.
    Ren F, Li C, Xi H et al (2009) Estimation of human age according to telomere shortening in peripheral blood leukocytes of Tibetan. Am J Forensic Med Pathol 30:252–255. doi: 10.1097/PAF.0b013e318187df8e CrossRefPubMedGoogle Scholar
  13. 13.
    Takubo K, Aida J, Izumiyama-Shimomura N et al (2010) Changes of telomere length with aging. Geriatr Gerontol Int. doi: 10.1111/j.1447-0594.2010.00605.x Google Scholar
  14. 14.
    Mokry J, Soukup T, Micuda S et al (2010) Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J Biomed Biotechnol 2010:673513. doi: 10.1155/2010/673513 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kumei Y, Akiyama H, Onizuka T, Kobayashi C (2011) Variation of telomeric DNA content in gingiva and dental pulp. Arch Oral Biol 56:1641–1645. doi: 10.1016/j.archoralbio.2011.07.009 CrossRefPubMedGoogle Scholar
  16. 16.
    Srettabunjong S, Satitsri S, Thongnoppakhun W, Tirawanchai N (2014) The study on telomere length for age estimation in a Thai population. Am J Forensic Med Pathol 35:148–153. doi: 10.1097/paf.0000000000000095 CrossRefPubMedGoogle Scholar
  17. 17.
    Higgins D, Austin JJ (2013) Teeth as a source of DNA for forensic identification of human remains: a review. Sci Justice 53:433–441. doi: 10.1016/j.scijus.2013.06.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47. doi: 10.1093/nar/30.10.e47 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Alvarez-Garcia A, Muñoz I, Pestoni C et al (1996) Effect of environmental factors on PCR-DNA analysis from dental pulp. Int J Legal Med 109:125–129. doi: 10.1007/BF01369671 CrossRefPubMedGoogle Scholar
  20. 20.
    Pfeiffer H, Huhne J, Seitz B, Brinkmann B (1999) Influence of soil storage and exposure period on DNA recovery from teeth. Int J Legal Med 112:142–144. doi: 10.1007/s004140050219 CrossRefPubMedGoogle Scholar
  21. 21.
    De Leo D, Turrina S, Marigo M (2000) Effects of individual dental factors on genomic DNA analysis. Am J Forensic Med Pathol 21:411–415CrossRefPubMedGoogle Scholar
  22. 22.
    Rubio L, Santos I, Gaitan MJ, Martin de-las Heras S (2013) Time-dependent changes in DNA stability in decomposing teeth over 18 months. Acta Odontol Scand 71:638–643. doi: 10.3109/00016357.2012.700068 CrossRefPubMedGoogle Scholar
  23. 23.
    Allshire RC, Dempster M, Hastie ND (1989) Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res 17:4611–4627. doi: 10.1093/nar/17.12.4611 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Aviv A, Hunt SC, Lin J et al (2011) Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res 39:1–5. doi: 10.1093/nar/gkr634 CrossRefGoogle Scholar
  25. 25.
    Vera E, Blasco MA (2012) Beyond average: potential for measurement of short telomeres. Aging 4:379–392CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zubakov D, Liu F, Kokmeijer I et al (2016) Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length. Forensic Science International: Genetics 24:33–43. doi: 10.1016/j.fsigen.2016.05.014 CrossRefGoogle Scholar
  27. 27.
    Martin-Ruiz CM, Baird D, Roger L et al (2015) Reproducibility of telomere length assessment: an international collaborative study. Int J Epidemiol 44:1673–1683. doi: 10.1093/ije/dyu191 CrossRefPubMedGoogle Scholar
  28. 28.
    Elbers CC, Garcia ME, Kimura M et al (2014) Comparison between southern blots and qPCR analysis of leukocyte telomere length in the health ABC study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences 69(A):527–531. doi: 10.1093/gerona/glt121 CrossRefGoogle Scholar
  29. 29.
    Raschenberger J, Lamina C, Haun M et al (2016) Influence of DNA extraction methods on relative telomere length measurements and its impact on epidemiological studies. Scientific Reports 6:25398. doi: 10.1038/srep25398 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Diez-Roux AV, Ranjit N, Jenny NS et al (2009) Race/ethnicity and telomere length in the multi-ethnic study of atherosclerosis. Aging Cell 8:251–257. doi: 10.1111/j.1474-9726.2009.00470.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Drury SS, Esteves K, Hatch V et al (2015) Setting the trajectory: racial disparities in newborn telomere length. J Pediatr 166:1181–1186. doi: 10.1016/j.jpeds.2015.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lin J, Epel E, Blackburn E (2012) Telomeres and lifestyle factors: roles in cellular aging. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 730:85–89. doi: 10.1016/j.mrfmmm.2011.08.003 CrossRefPubMedGoogle Scholar
  33. 33.
    Aviv A, Susser E (2013) Leukocyte telomere length and the father’s age enigma: implications for population health and for life course. Int J Epidemiol 42:457–462. doi: 10.1093/ije/dys236 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hjelmborg JB, Dalgård C, Möller S et al (2015) The heritability of leucocyte telomere length dynamics. J Med Genet 52:297–302. doi: 10.1136/JMEDGENET-2014-102736 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Meinl A, Huber CD, Tangl S et al (2008) Comparison of the validity of three dental methods for the estimation of age at death. Forensic Sci Int 178:96–105. doi: 10.1016/j.forsciint.2008.02.008 CrossRefPubMedGoogle Scholar
  36. 36.
    Gardner M, Bann D, Wiley L et al (2014) Gender and telomere length: systematic review and meta-analysis. Exp Gerontol 51:15–27. doi: 10.1016/j.exger.2013.12.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ana Belén Márquez-Ruiz
    • 1
  • Lucas González-Herrera
    • 1
  • Aurora Valenzuela
    • 1
  1. 1.Department of Forensic Medicine, Faculty of MedicineUniversity of GranadaGranadaSpain

Personalised recommendations