International Journal of Legal Medicine

, Volume 131, Issue 4, pp 1085–1101 | Cite as

Back to the Future - Part 2. Post-mortem assessment and evolutionary role of the bio-medicolegal sciences

  • Santo Davide Ferrara
  • Giovanni Cecchetto
  • Rossana Cecchi
  • Donata Favretto
  • Silke Grabherr
  • Takaki Ishikawa
  • Toshikazu Kondo
  • Massimo Montisci
  • Heidi Pfeiffer
  • Maurizio Rippa Bonati
  • Dina Shokry
  • Marielle Vennemann
  • Thomas Bajanowski


Part 2 of the review “Back to the Future” is dedicated to the evolutionary role of the bio-medicolegal sciences, reporting the historical profiles, the state of the art, and prospects for future development of the main related techniques and methods of the ancillary disciplines that have risen to the role of “autonomous” sciences, namely, Genetics and Genomics, Toxicology, Radiology, and Imaging, involved in historic synergy in the “post-mortem assessment,” together with the mother discipline Legal Medicine, by way of its primary fundament, universally denominated as Forensic Pathology. The evolution of the scientific research and the increased accuracy of the various disciplines will be oriented towards the elaboration of an “algorithm,” able to weigh the value of “evidence” placed at the disposal of the “justice system” as real truth and proof.


Medicolegal autopsy Forensic autopsy Post-mortem assessment Bio-Medicolegal sciences - Forensic Pathology Genetics and genomics Toxicology Radiology and imaging 



The authors are thankful to Dr. Thomas Dewis for his language editing.


  1. 1.
    Maeda H, Ishikawa T, Michiue T (2014) Forensic molecular pathology: its impacts on routine work, education and training. Leg Med (Tokyo) 16:61–69CrossRefGoogle Scholar
  2. 2.
    Bensmail H, Haoudi A (2005) Data mining in genomics and proteomics. J Biomed Biotechnol 2005:63–64PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA 'fingerprints'. Nature 318:577–579PubMedCrossRefGoogle Scholar
  4. 4.
    Wambaugh J (1989) The blooding. William Morrow and Company, New YorkGoogle Scholar
  5. 5.
    Gill P, Werrett DJ (1990) Interpretation of DNA profiles using a computerised database. Electrophoresis 11:444–448PubMedCrossRefGoogle Scholar
  6. 6.
    Saiki RK, Gelfand DH, Stoffel S et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  7. 7.
    Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746–756PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sparkes R, Kimpton C, Watson S et al (1996) The validation of a 7-locus multiplex STR test for use in forensic casework. (I). Mixtures, ageing, degradation and species studies. Int J Legal Med 109:186–194PubMedCrossRefGoogle Scholar
  9. 9.
    Butler JM (2004) Short tandem repeat analysis for human identity testing. Curr Protoc Hum Genet Chapter 14:Unit 148Google Scholar
  10. 10.
    Gill P, Brenner CH, Buckleton JS et al (2006) DNA commission of the International Society of Forensic Genetics: recommendations on the interpretation of mixtures. Forensic Sci Int 160:90–101PubMedCrossRefGoogle Scholar
  11. 11.
    Gill P, Haned H, Bleka O, Hansson O, Dorum G, Egeland T (2015) Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches—twenty years of research and development. Forensic Sci Int Genet 18:100–117PubMedCrossRefGoogle Scholar
  12. 12.
    Buckleton J (2009) Validation issues around DNA typing of low level DNA. Forensic Sci Int Genet 3:255–260PubMedCrossRefGoogle Scholar
  13. 13.
    (2006) THE NATIONAL DNA DATABASE. Parliamentary Office of Science and Technology. February 2006, Number 258Google Scholar
  14. 14.
    Baechtel FS, Monson KL, Forsen GE, Budowle B, Kearney JJ (1991) Tracking the violent criminal offender through DNA typing profiles—a national database system concept. EXS 58:356–360PubMedGoogle Scholar
  15. 15.
    Schneider PM, Martin PD (2001) Criminal DNA databases: the European situation. Forensic Sci Int 119:232–238PubMedCrossRefGoogle Scholar
  16. 16.
    Gill P, Fereday L, Morling N, Schneider PM (2006) New multiplexes for Europe—amendments and clarification of strategic development. Forensic Sci Int 163:155–157PubMedCrossRefGoogle Scholar
  17. 17.
    Gill P, Ivanov PL, Kimpton C et al (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6:130–135PubMedCrossRefGoogle Scholar
  18. 18.
    Jobling MA, Pandya A, Tyler-Smith C (1997) The Y chromosome in forensic analysis and paternity testing. Int J Legal Med 110:118–124PubMedCrossRefGoogle Scholar
  19. 19.
    Willuweit S, Roewer L, International Forensic YCUG (2007) Y chromosome haplotype reference database (YHRD): update. Forensic Sci Int Genet 1:83–87PubMedCrossRefGoogle Scholar
  20. 20.
    Parson W, Dur A (2007) EMPOP—a forensic mtDNA database. Forensic Sci Int Genet 1:88–92PubMedCrossRefGoogle Scholar
  21. 21.
    Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1064PubMedGoogle Scholar
  22. 22.
    Musgrave-Brown E, Ballard D, Balogh K et al (2007) Forensic validation of the SNPforID 52-plex assay. Forensic Sci Int Genet 1:186–190PubMedCrossRefGoogle Scholar
  23. 23.
    Calacal GC, Apaga DL, Salvador JM et al (2015) Comparing different post-mortem human samples as DNA sources for downstream genotyping and identification. Forensic Sci Int Genet 19:212–220PubMedCrossRefGoogle Scholar
  24. 24.
    Schlenker A, Grimble K, Azim A, Owen R, Hartman D (2016) Toenails as an alternative source material for the extraction of DNA from decomposed human remains. Forensic Sci Int 258:1–10PubMedCrossRefGoogle Scholar
  25. 25.
    Brion M, Sobrino B, Martinez M, Blanco-Verea A, Carracedo A (2015) Massive parallel sequencing applied to the molecular autopsy in sudden cardiac death in the young. Forensic Sci Int Genet 18:160–170PubMedCrossRefGoogle Scholar
  26. 26.
    Hertz CL, Christiansen SL, Ferrero-Miliani L et al (2016) Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int J Legal Med 130:91–102PubMedCrossRefGoogle Scholar
  27. 27.
    Laer K, Dork T, Vennemann M, Rothamel T, Klintschar M (2015) Polymorphisms in genes of respiratory control and sudden infant death syndrome. Int J Legal Med 129:977–984PubMedCrossRefGoogle Scholar
  28. 28.
    Koppelkamm A, Vennemann B, Lutz-Bonengel S, Fracasso T, Vennemann M (2011) RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Legal Med 125:573–580PubMedCrossRefGoogle Scholar
  29. 29.
    Santos C, Phillips C, Oldoni F et al (2015) Completion of a worldwide reference panel of samples for an ancestry informative Indel assay. Forensic Sci Int Genet 17:75–80PubMedCrossRefGoogle Scholar
  30. 30.
    Walsh S, Liu F, Ballantyne KN, van Oven M, Lao O, Kayser M (2011) IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet 5:170–180PubMedCrossRefGoogle Scholar
  31. 31.
    Walsh S, Liu F, Wollstein A et al (2013) The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet 7:98–115PubMedCrossRefGoogle Scholar
  32. 32.
    Vennemann M, Koppelkamm A (2010) mRNA profiling in forensic genetics I: possibilities and limitations. Forensic Sci Int 203:71–75. doi: 10.1016/j.forsciint.2010.07.006 PubMedCrossRefGoogle Scholar
  33. 33.
    Vidaki A, Daniel B, Court DS (2013) Forensic DNA methylation profiling—potential opportunities and challenges. Forensic Sci Int Genet 7:499–507PubMedCrossRefGoogle Scholar
  34. 34.
    Parson W, Strobl C, Huber G et al (2013) Evaluation of next generation mtGenome sequencing using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 7:543–549PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ferrara SD, Tedeschi L, Frison G, Rossi A (1995) Fatality due to gamma-hydroxybutyric acid (GHB) and heroin intoxication. J Forensic Sci 40:501–504PubMedCrossRefGoogle Scholar
  36. 36.
    Orfila Rotger M (1826) Traité des poisons tirés des règnes minéral, végétal et animal, ou toxicologie générale, considérée sous les rapports de la physiologie, de la pathologie et de la médecine légale. ParisGoogle Scholar
  37. 37.
    Dall’Olio G, Galzigna L (1993) Matheo Orfila, toxicologist and forensic physician. Eur J Lab Med 1:109–110Google Scholar
  38. 38.
    Coley H (1832) Comprising the consideration of poisons and asphyxia. Stodart, New YorkGoogle Scholar
  39. 39.
    Hakkinen PJ, Mohapatra A, Gilbert SG, Wexler P (2009) Information resources in toxicology, 4° edition. Academic Press, LondonGoogle Scholar
  40. 40.
    Kintz P (2004) Value of hair analysis in postmortem toxicology. Forensic Sci Int 142:127–134PubMedCrossRefGoogle Scholar
  41. 41.
    Ferrara SD, Bajanowski T, Cecchi R, Snenghi R, Case C, Viel G (2010) Bio-medicolegal guidelines and protocols: survey and future perspectives in Europe. Int J Legal Med 124:345–350PubMedCrossRefGoogle Scholar
  42. 42.
    Skopp G (2010) Postmortem toxicology. Forensic Sci Med Pathol 6:314–325PubMedCrossRefGoogle Scholar
  43. 43.
    Vogliardi S, Tucci M, Stocchero G, Ferrara SD, Favretto D (2015) Sample preparation methods for determination of drugs of abuse in hair samples: a review. Anal Chim Acta 857:1–27PubMedCrossRefGoogle Scholar
  44. 44.
    Drummer OH (2007) Post-mortem toxicology. Forensic Sci Int 165:199–203PubMedCrossRefGoogle Scholar
  45. 45.
    Drummer OH (2007) Requirements for bioanalytical procedures in postmortem toxicology. Anal Bioanal Chem 388:1495–1503PubMedCrossRefGoogle Scholar
  46. 46.
    Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216–224PubMedCrossRefGoogle Scholar
  47. 47.
    Nikolaou P, Papoutsis I, Dona A, Spiliopoulou C, Athanaselis S (2013) Toxicological analysis of formalin-fixed or embalmed tissues: a review. Forensic Sci Int 233:312–319PubMedCrossRefGoogle Scholar
  48. 48.
    Viel G, Nalesso A, Cecchetto G, Montisci M, Ferrara SD (2009) Stability of cocaine in formalin solution and fixed tissues. Forensic Sci Int 193:79–83PubMedCrossRefGoogle Scholar
  49. 49.
    Ferner RE (2008) Post-mortem clinical pharmacology. Br J Clin Pharmacol 66:430–443PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ferrara SD (1989) Il laboratorio di farmacologia e tossicologia clinica. Edizioni Medico ScientificheGoogle Scholar
  51. 51.
    Baselt RC (2014) Disposition of toxic drugs and chemicals in man, 10th edn. Biomedical Publications, Seal BeachGoogle Scholar
  52. 52.
    Negrusz A, Cooper G (2013) Clarke’s analytical forensic toxicology, second edn. Pharmaceutical Press, LondonGoogle Scholar
  53. 53.
    Viel G, Cecchetto G, Fabbri LD, Furlan C, Ferrara SD, Montisci M (2009) Forensic application of ESEM and XRF-EDS techniques to a fatal case of sodium phosphate enema intoxication. Int J Legal Med 123:345–350PubMedCrossRefGoogle Scholar
  54. 54.
    Afshari CA, Hamadeh HK, Bushel PR (2011) The evolution of bioinformatics in toxicology: advancing toxicogenomics. Toxicol Sci 120(Suppl 1):S225–S237PubMedCrossRefGoogle Scholar
  55. 55.
    Levo A, Koski A, Ojanpera I, Vuori E, Sajantila A (2003) Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int 135:9–15PubMedCrossRefGoogle Scholar
  56. 56.
    Madadi P, Koren G, Cairns J et al (2007) Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician 53:33–35PubMedPubMedCentralGoogle Scholar
  57. 57.
    Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5:936–948PubMedCrossRefGoogle Scholar
  58. 58.
    Chen M, Zhang M, Borlak J, Tong W (2012) A decade of toxicogenomic research and its contribution to toxicological science. Toxicol Sci 130:217–228PubMedCrossRefGoogle Scholar
  59. 59.
    Wilkins MR, Sanchez JC, Gooley AA et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50PubMedCrossRefGoogle Scholar
  60. 60.
    Grassl J, Westbrook JA, Robinson A, Boren M, Dunn MJ, Clyne RK (2009) Preserving the yeast proteome from sample degradation. Proteomics 9:4616–4626Google Scholar
  61. 61.
    Cecconi D, Lonardoni F, Favretto D et al (2011) Changes in amniotic fluid and umbilical cord serum proteomic profiles of foetuses with intrauterine growth retardation. Electrophoresis 32:3630–3637PubMedCrossRefGoogle Scholar
  62. 62.
    Garland P, Broom LJ, Quraishe S et al (2012) Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton. PLoS One 7:e47552PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Brunner J, Bronisch T, Uhr M et al (2005) Proteomic analysis of the CSF in unmedicated patients with major depressive disorder reveals alterations in suicide attempters. Eur Arch Psychiatry Clin Neurosci 255:438–440PubMedCrossRefGoogle Scholar
  64. 64.
    Datta A, Akatsu H, Heese K, Sze SK (2013) Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteome 91:556–568CrossRefGoogle Scholar
  65. 65.
    Schlicht K, Buttner A, Siedler F et al (2007) Comparative proteomic analysis with postmortem prefrontal cortex tissues of suicide victims versus controls. J Psychiatr Res 41:493–501PubMedCrossRefGoogle Scholar
  66. 66.
    Tarran SL, Craft GE, Valova V et al (2007) The use of proteomics to study wound healing: a preliminary study for forensic estimation of wound age. Med Sci Law 47:134–140PubMedCrossRefGoogle Scholar
  67. 67.
    Morris MK, Chi A, Melas IN, Alexopoulos LG (2014) Phosphoproteomics in drug discovery. Drug Discov Today 19:425–432PubMedCrossRefGoogle Scholar
  68. 68.
    Favretto D, Cosmi E, Ragazzi E et al (2012) Cord blood metabolomic profiling in intrauterine growth restriction. Anal Bioanal Chem 402:1109–1121PubMedCrossRefGoogle Scholar
  69. 69.
    Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056PubMedCrossRefGoogle Scholar
  70. 70.
    Byard RW, Musgrave I, Hoban C, Bunce M (2015) DNA sequencing and metabolomics: new approaches to the forensic assessment of herbal therapeutic agents. Forensic Sci Med Pathol 11:1–2PubMedCrossRefGoogle Scholar
  71. 71.
    Frech TM, Revelo MP, Ryan JJ et al (2015) Cardiac metabolomics and autopsy in a patient with early diffuse systemic sclerosis presenting with dyspnea: a case report. J Med Case Rep 9:136PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kaddurah-Daouk R, Rozen S, Matson W et al (2011) Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement 7:309–317PubMedCrossRefGoogle Scholar
  73. 73.
    Banaschak S, Rzanny R, Reichenbach JR, Kaiser WA, Klein A (2005) Estimation of postmortem metabolic changes in porcine brain tissue using 1H-MR spectroscopy—preliminary results. Int J Legal Med 119:77–79PubMedCrossRefGoogle Scholar
  74. 74.
    Musshoff F, Klotzbach H, Block W, Traeber F, Schild H, Madea B (2011) Comparison of post-mortem metabolic changes in sheep brain tissue in isolated heads and whole animals using 1H-MR spectroscopy—preliminary results. Int J Legal Med 125:741–744PubMedCrossRefGoogle Scholar
  75. 75.
    Shi W, Chance MR (2008) Metallomics and metalloproteomics. Cell Mol Life Sci 65:3040–3048PubMedCrossRefGoogle Scholar
  76. 76.
    Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ (2015) Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 148:66–84PubMedCrossRefGoogle Scholar
  77. 77.
    Grabherr S, Grimm J, Heinemann A (2016) Atlas of post-mortem angiography. Springer, HeidelbergCrossRefGoogle Scholar
  78. 78.
    Meadowcroft WH (1986) The ABC of the X-rays. Simpkin, Marshall, Hamilton, Kent & Co, LondonGoogle Scholar
  79. 79.
    Brogdon BG, Lichtenstein JE (2011) Forensic radiology in historical perspective. In: Thali MJ, Viner MD, Brogdon BG (eds) Brogdon’s forensic radiology. CRC Press, Boca RatonGoogle Scholar
  80. 80.
    Blundell R, Wilson G (1950) Trial of Buck Ruxton. William Hodge & Company, LondonGoogle Scholar
  81. 81.
    Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics 26:1305–1333PubMedCrossRefGoogle Scholar
  82. 82.
    Thali MJ, Dirnhofer R, Vock P (2009) The Virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. CRC Press, Boca RatonCrossRefGoogle Scholar
  83. 83.
    Jolibert M, Cohen F, Bartoli C et al (2011) Postmortem CT-angiography: feasibility of US-guided vascular access. J Radiol 92:446–449PubMedCrossRefGoogle Scholar
  84. 84.
    Brough AL, Morgan B, Rutty GN (2015) Postmortem computed tomography (PMCT) and disaster victim identification. Radiol Med 120:866–873PubMedCrossRefGoogle Scholar
  85. 85.
    Grabherr S, Cooper C, Ulrich-Bochsler S et al (2009) Estimation of sex and age of “virtual skeletons”—a feasibility study. Eur Radiol 19:419–429PubMedCrossRefGoogle Scholar
  86. 86.
    Borowska-Solonynko A, Solonynko B (2015) The use of 3D computed tomography reconstruction in medico-legal testimony regarding injuries in living victims—risks and benefits. J Forensic Legal Med 30:9–13CrossRefGoogle Scholar
  87. 87.
    Viel G, Schroder AS, Puschel K, Braun C (2009) Planned complex suicide by penetrating captive-bolt gunshot and hanging: case study and review of the literature. Forensic Sci Int 187:e7–11PubMedCrossRefGoogle Scholar
  88. 88.
    Roberts IS, Benamore RE, Benbow EW et al (2012) Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 379:136–142PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ruder TD, Ebert LC, Khattab AA, Rieben R, Thali MJ, Kamat P (2013) Edema is a sign of early acute myocardial infarction on post-mortem magnetic resonance imaging. Forensic Sci Med Pathol 9:501–505PubMedCrossRefGoogle Scholar
  90. 90.
    Yen K, Vock P, Tiefenthaler B et al (2004) Virtopsy: forensic traumatology of the subcutaneous fatty tissue; multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) as diagnostic tools. J Forensic Sci 49:799–806PubMedCrossRefGoogle Scholar
  91. 91.
    Schneider B, Chevallier C, Dominguez A et al (2012) The forensic radiographer: a new member in the medicolegal team. Am J Forensic Med Pathol 33:30–36PubMedCrossRefGoogle Scholar
  92. 92.
    Zerlauth JB, Doenz F, Dominguez A et al (2013) Surgical interventions with fatal outcome: utility of multi-phase postmortem CT angiography. Forensic Sci Int 225:32–41PubMedCrossRefGoogle Scholar
  93. 93.
    Aghayev E, Thali MJ, Sonnenschein M, Jackowski C, Dirnhofer R, Vock P (2007) Post-mortem tissue sampling using computed tomography guidance. Forensic Sci Int 166:199–203PubMedCrossRefGoogle Scholar
  94. 94.
    Varlet V, Smith F, de Froidmont S et al (2013) Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography-mass spectrometry and stable labeled isotope as internal standard. Anal Chim Acta 784:42–46PubMedCrossRefGoogle Scholar
  95. 95.
    Egger C, Bize P, Vaucher P et al (2012) Distribution of artifactual gas on post-mortem multidetector computed tomography (MDCT). Int J Legal Med 126:3–12PubMedCrossRefGoogle Scholar
  96. 96.
    Egger C, Vaucher P, Doenz F, Palmiere C, Mangin P, Grabherr S (2012) Development and validation of a postmortem radiological alteration index: the RA-Index. Int J Legal Med 126:559–566PubMedCrossRefGoogle Scholar
  97. 97.
    Grabherr S, Grimm J, Dominguez A, Vanhaebost J, Mangin P (2014) Advances in post-mortem CT-angiography. Br J Radiol 87:20130488PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Saunders SL, Morgan B, Raj V, Rutty GN (2011) Post-mortem computed tomography angiography: past, present and future. Forensic Sci Med Pathol 7:271–277PubMedCrossRefGoogle Scholar
  99. 99.
    Saunders SL, Morgan B, Raj V, Robinson CE, Rutty GN (2011) Targeted post-mortem computed tomography cardiac angiography: proof of concept. Int J Legal Med 125:609–616PubMedCrossRefGoogle Scholar
  100. 100.
    Roberts IS, Benamore RE, Peebles C, Roobottom C, Traill ZC (2011) Technical report: diagnosis of coronary artery disease using minimally invasive autopsy: evaluation of a novel method of post-mortem coronary CT angiography. Clin Radiol 66:645–650PubMedCrossRefGoogle Scholar
  101. 101.
    Jackowski C, Sonnenschein M, Thali MJ, Aghayev E, von Allmen G, Yen K, Dirnhofer R, Vock P (2005) Virtopsy: postmortem minimally invasive angiography using cross section techniques—implementation and preliminary results. J Forensic Sci 50:1175–1186PubMedCrossRefGoogle Scholar
  102. 102.
    Grabherr S, Doenz F, Steger B et al (2011) Multi-phase post-mortem CT angiography: development of a standardized protocol. Int J Legal Med 125:791–802PubMedCrossRefGoogle Scholar
  103. 103.
    Chevallier C, Doenz F, Vaucher P et al (2013) Postmortem computed tomography angiography vs. conventional autopsy: advantages and inconveniences of each method. Int J Legal Med 127:981–989PubMedCrossRefGoogle Scholar
  104. 104.
    Michaud K, Grabherr S, Doenz F, Mangin P (2012) Evaluation of postmortem MDCT and MDCT-angiography for the investigation of sudden cardiac death related to atherosclerotic coronary artery disease. Int J Cardiovasc Imaging 28:1807–1822PubMedCrossRefGoogle Scholar
  105. 105.
    Michaud K, Grabherr S, Faouzi M, Grimm J, Doenz F, Mangin P (2015) Pathomorphological and CT-angiographical characteristics of coronary atherosclerotic plaques in cases of sudden cardiac death. Int J Legal Med 129:1067–1077PubMedCrossRefGoogle Scholar
  106. 106.
    Michaud K, Grabherr S, Jackowski C, Bollmann MD, Doenz F, Mangin P (2014) Postmortem imaging of sudden cardiac death. Int J Legal Med 128:127–137PubMedCrossRefGoogle Scholar
  107. 107.
    Palmiere C, Binaghi S, Doenz F et al (2012) Detection of hemorrhage source: the diagnostic value of post-mortem CT-angiography. Forensic Sci Int 222:33–39PubMedCrossRefGoogle Scholar
  108. 108.
    Wozniak K, Moskala A, Rzepecka-Wozniak E (2015) Imaging for homicide investigations. Radiol Med 120:846–855PubMedCrossRefGoogle Scholar
  109. 109.
    Wichmann D, Heinemann A, Weinberg C et al (2014) Virtual autopsy with multiphase postmortem computed tomographic angiography versus traditional medical autopsy to investigate unexpected deaths of hospitalized patients: a cohort study. Ann Intern Med 160:534–541PubMedCrossRefGoogle Scholar
  110. 110.
    Bolliger SA, Ruder TD, Ketterer T, Glaser N, Thali MJ, Ampanozi G (2014) Comparison of stab wound probing versus radiological stab wound channel depiction with contrast medium. Forensic Sci Int 234:45–49PubMedCrossRefGoogle Scholar
  111. 111.
    Fais P, Cecchetto G, Boscolo-Berto R et al (2016) Morphometric analysis of stab wounds by MSCT and MRI after the instillation of contrast medium. Radiol Med. doi: 10.1007/s11547-015-0612-3 PubMedGoogle Scholar
  112. 112.
    Blitz AM, Aygun N, Herzka DA (2015) Invited commentary: the rise of microradiology. Radiographics 35:1091–1093PubMedCrossRefGoogle Scholar
  113. 113.
    Grandi C, Di Liddo R, Paganin P et al (2011) Porous alginate/poly(epsilon-caprolactone) scaffolds: preparation, characterization and in vitro biological activity. Int J Mol Med 27:455–467PubMedGoogle Scholar
  114. 114.
    Fais P, Giraudo C, Viero A et al (2016) Micro computed tomography features of laryngeal fractures in a case of fatal manual strangulation. Leg Med (Tokyo) 18:85–89CrossRefGoogle Scholar
  115. 115.
    Chen T, Chodara AM, Sprecher AJ, Fang F, Song W, Tao C, Jiang JJ (2012) A new method of reconstructing the human laryngeal architecture using micro-MRI. J Voice 26:555–562PubMedCrossRefGoogle Scholar
  116. 116.
    Pelletti G, Viel G, Fais P, Viero A, Visentin S, Miotto D, Montisci M, Cecchetto G, Giraudo C (2017) Micro-computed tomography of false starts produced on bone by different hand-saws. doi: 10.1016/j.legalmed.2017.01.009
  117. 117.
    Kettner M, Potente S, Schulz B, Knauff P, Schmidt PH, Ramsthaler F (2014) Analysis of laryngeal fractures in decomposed bodies using microfocus computed tomography (mfCT). Forensic Sci Med Pathol 10:607–612PubMedCrossRefGoogle Scholar
  118. 118.
    Thali MJ, Taubenreuther U, Karolczak M et al (2003) Forensic microradiology: micro-computed tomography (micro-CT) and analysis of patterned injuries inside of bone. J Forensic Sci 48:1336–1342PubMedGoogle Scholar
  119. 119.
    Rutty GN, Brough A, Biggs MJ, Robinson C, Lawes SD, Hainsworth SV (2013) The role of micro-computed tomography in forensic investigations. Forensic Sci Int 225:60–66PubMedCrossRefGoogle Scholar
  120. 120.
    Sandholzer MA, Baron K, Heimel P, Metscher BD (2014) Volume analysis of heat-induced cracks in human molars: a preliminary study. J Forensic Dent Sci 6:139–144PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Cecchetto G, Giraudo C, Amagliani A et al (2011) Estimation of the firing distance through micro-CT analysis of gunshot wounds. Int J Legal Med 125:245–251PubMedCrossRefGoogle Scholar
  122. 122.
    Viero A, Giraudo C, Cecchetto G et al (2014) An unusual case of “dyadic-death” with a single gunshot. Forensic Sci Int 244:E1–E5PubMedCrossRefGoogle Scholar
  123. 123.
    Giraudo C, Fais P, Pelletti G et al (2016) Micro-CT features of intermediate gunshot wounds covered by textiles. Int J Legal Med 130:1257–1264PubMedCrossRefGoogle Scholar
  124. 124.
    Cecchetto G, Amagliani A, Giraudo C et al (2012) MicroCT detection of gunshot residue in fresh and decomposed firearm wounds. Int J Legal Med 126:377–383PubMedCrossRefGoogle Scholar
  125. 125.
    Fais P, Giraudo C, Boscolo-Berto R et al (2013) Micro-CT features of intermediate gunshot wounds severely damaged by fire. Int J Legal Med 127:419–425PubMedCrossRefGoogle Scholar
  126. 126.
    Fais P, Viero A, Amagliani A, Viel G, Montisci M, Miotto D, Cecchetto G (2015) Identification of bullet entrance in different type of intermediate firearm wounds through micro-computed tomography analysis. J Forensic Radiol Imaging 3:147–152CrossRefGoogle Scholar
  127. 127.
    Yu TY, Finney BH, Dehghani H, Claridge E, Thomas S (2013) Three dimensional analysis of cardiovascular development in mouse embryos using X-ray microcomputed tomography. Microsc Anal 27:12–13Google Scholar
  128. 128.
    Bertrand A, Pasquier A, Petiet A et al (2013) Micro-MRI study of cerebral aging: ex vivo detection of hippocampal subfield reorganization, microhemorrhages and amyloid plaques in mouse lemur primates. PLoS One 8:e56593PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Lombardi CM, Zambelli V, Botta G et al (2014) Postmortem microcomputed tomography (micro-CT) of small fetuses and hearts. Ultrasound Obstet Gynecol 44:600–609PubMedCrossRefGoogle Scholar
  130. 130.
    King LS (1965) Of autopsies. Md State Med J 14:59–60PubMedGoogle Scholar
  131. 131.
    Mangin P, Bonbled F, Vali M et al (2015) European Council of Legal Medicine (ECLM) accreditation of forensic pathology services in Europe. Int J Legal Med 129:395–403PubMedCrossRefGoogle Scholar
  132. 132.
    Boscolo-Berto R, Viel G, Cecchi R et al (2012) Journals publishing bio-medicolegal research in Europe. Int J Legal Med 126:129–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Santo Davide Ferrara
    • 1
  • Giovanni Cecchetto
    • 1
  • Rossana Cecchi
    • 2
  • Donata Favretto
    • 1
  • Silke Grabherr
    • 3
  • Takaki Ishikawa
    • 4
  • Toshikazu Kondo
    • 5
  • Massimo Montisci
    • 1
  • Heidi Pfeiffer
    • 6
  • Maurizio Rippa Bonati
    • 7
  • Dina Shokry
    • 8
  • Marielle Vennemann
    • 6
  • Thomas Bajanowski
    • 9
  1. 1.Department of Legal and Occupational Medicine, Toxicology and Public HealthUniversity-Hospital of PadovaPaduaItaly
  2. 2.Department of Biomedical, Biotechnological and Translational MedicineUniversity of ParmaParmaItaly
  3. 3.University Center of Legal Medicine Lausanne-GenevaUniversity of LausanneLausanneSwitzerland
  4. 4.Department of Legal MedicineOsaka City University Medical SchoolOsakaJapan
  5. 5.Department of Forensic MedicineWakayama Medical UniversityWakayamaJapan
  6. 6.Institute of Legal MedicineUniversity-Hospital MünsterMünsterGermany
  7. 7.Department of Cardiac, Thoracic and Vascular Sciences, Section of Medical HumanitiesUniversity of PadovaPaduaItaly
  8. 8.Department of Forensic Medicine and Clinical ToxicologyUniversity of CairoCairoEgypt
  9. 9.Institute of Legal MedicineUniversity-Hospital EssenEssenGermany

Personalised recommendations