Skip to main content
Log in

Modeling internal ballistics of gas combustion guns

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karger B, Teige K, Brinkmann B (1995) Zwei Suizide mit selbstgefertigten Schußapparaten: Kriminaltechnische und einschußmorphologische Besonderheiten. Arch Kriminol 195:147–152

    CAS  PubMed  Google Scholar 

  2. Koops E, Flüs K, Lockemann U, Püschel K (1994) Tödliche Schußverletzungen in Hamburg 1966-1991. Arch Kriminol 193:14–22

    CAS  PubMed  Google Scholar 

  3. Mackley P, Püschel K, Turk EE (2010) Suicide by shooting with a tiling hammer. Int J Legal Med 124:75–77

    Article  Google Scholar 

  4. Schmidt V, Göb J (1981) Selbsttötung mit ungewöhnlichen Schußapparaten. Arch Kriminol 167:11–20

    CAS  PubMed  Google Scholar 

  5. Nadjem H, Pollak S, Schley K (1995) Tödliche Schußverletzungen mit sogenannten Schießkugelschreibern. Arch Kriminol 195:95–102

    CAS  PubMed  Google Scholar 

  6. Möbus U, Eberhardt W (2000) Tödlicher Unfall durch selbstgefertigte Schußwaffe. Arch Kriminol 206:96–101

    PubMed  Google Scholar 

  7. Janssen W (1966) Ungewöhnlicher tödlicher Unfall durch Erschießen mit selbstgebastelter Waffe. Kriminalistik 20:468–469

    Google Scholar 

  8. McCombs ND (2013) An unusually disguised firearm. AFTE J 45:59–61

    Google Scholar 

  9. Pal A, Pratihari HK (2014) Examination of some Indian homemade/improvised firearms and their ammunition. AFTE J 46:234–237

    Google Scholar 

  10. Courtney ED, Courtney MW (2013) Studying the internal ballistics of a combustion driven potato cannon using high-speed video. Eur J Phys 34:915–920

    Article  Google Scholar 

  11. Frank M, Jobski O, Bockholdt B, Grossjohann R, Stengel D, Ekkernkamp A, Hinz P (2012) When backyard fun turns to trauma: risk assessment of blunt ballistic impact trauma due to potato cannons. Int J Legal Med 126:13–18

    Article  Google Scholar 

  12. Pacheco Shah BK, Tothy AS (2013) Severe facial and ocular injuries from a potato gun. Pediatr Emerg Care 29:366–367

    Article  Google Scholar 

  13. Barker-Griffith AE, Streeten BW, Abraham JL, Schaefer DP, Norton SW (1998) Potato gun ocular injury. Ophthalmology 105:535–538

    Article  CAS  Google Scholar 

  14. Skavysh A, Wojcik R, Murphy RX, Kazahaya M, Pasquale MD, Barraco RD (2007) Facial injuries by potato gun: spuds as scuds. Inj Extra 38:81–83

    Article  Google Scholar 

  15. Franke E (1981) Ermittlung der Bewegungsenergie der Geschosse. In: Zobel KF (ed) PTB-Bericht W-19 Gesetzliche Munitionsprüfung. Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, pp 27–31

    Google Scholar 

  16. Kneubuehl BP (2013) Geschosse, Gesamtausgabe. Ballistik, Messtechnik, Wirksamkeit, Treffsicherheit. Stocker-Schmid, Dietikon

  17. Jasperson C, Pollmann A (2011) Video measurement of the muzzle velocity of a potato gun. Phys Educ 46:607–612

    Article  Google Scholar 

  18. Mungan CE (2009) Internal ballistics of a pneumatic potato cannon. Eur J Phys 30:453–457

    Article  Google Scholar 

  19. Rohrbach ZJ, Buresh TR, Madsen MJ (2012) Modelling the exit velocity of a compressed air cannon. Am J Phys 80:24–26

    Article  Google Scholar 

  20. Denny M (2013) Gas gun dynamics. Eur J Phys 34:1327–1336

    Article  Google Scholar 

  21. Kneubuehl BP, Coupland RM, Rothschild MA, Thali MJ (2011) Wound ballistics. Basics and Applications. Springer-Verlag, Berlin

    Google Scholar 

  22. Sturdivan LM, Viano DC, Champion HR (2004) Analysis of injury criteria to assess chest and abdominal injury risks in blunt ballistic impacts. J Trauma 56:651–663

    Article  Google Scholar 

  23. Lucas SR, McGowan JC, Lam TC, Yamaguchi GT, Carver M, Hinz A (2013) Assessment of the TASER XREP blunt impact and penetration injury potential using cadaveric testing. J Forensic Sci 58:S60–S68

    Article  Google Scholar 

  24. Frank M, Bockholdt B, Peters D, Lange J, Grossjohann R, Ekkernkamp A, Hinz P (2011) Blunt Criterion trauma model for head and chest injury risk assessment of cal. 380 R and cal. 22 long blank cartridge actuated gundog retrieval devices. Forensic Sci Int 208:37–41

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Department 3.5 Explosion Protection in Energy Technology, Physikalisch-Technische Bundesanstalt Braunschweig (Head of Department: Prof. Dr. Uwe Klausmeyer), especially Marc Shields and Rüdiger Strutz, for technical support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Frank.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 378 kb

ESM 2

PDF 299 kb

ESM 3

PDF 185 kb

ESM 4

PDF 191 kb

ESM 5

PDF 188 kb

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schorge, V., Grossjohann, R., Schönekess, H.C. et al. Modeling internal ballistics of gas combustion guns. Int J Legal Med 130, 737–742 (2016). https://doi.org/10.1007/s00414-015-1240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1240-0

Keywords

Navigation