International Journal of Legal Medicine

, Volume 132, Issue 4, pp 1231–1239 | Cite as

The contribution of Micro-CT to the evaluation of trabecular bone at the posterior part of the auricular surface in men

  • Céline Deguette
  • Daniel Chappard
  • Hélène Libouban
  • Guillaume Airagnes
  • Clotilde Rouge-Maillart
  • Norbert Telmon
Technical Note



Using multi-slice computed tomography (MSCT), Barrier et al. described the disappearance at the posterior auricular surface of a “central line” (CL) and “juxtalinear cells” (JLCs) belonging to a trabecular bundle, and a trabecular density gradient around the CL that decreased with age. The aim of our study was to use micro-CT to test these findings, referring to the concept of Ascadi and Nemeskeri.


The coxal bones of fifteen males were used; age was known. CLs were identified on MSCT-sections using Barrier’s method (64 detectors, 0.6 mm slice thickness, 0.1 mm overlap) with two different software programs (Synapse®, Amira®). Then, CLs were researched on microCT slices (pixel size: 36 μm). Three volumes of interest were defined (around, above, and below CL), and 3D morphometric parameters of the trabecular microarchitecture (particularly BV/TV and DA) were calculated. Two-tailed statistical analyses were performed attempting to correlate these parameters with age at death.


CLs and JLCs were observed on micro-CT slices, but with moderate agreement between both imaging techniques. Their presence was not correlated with the age of the subjects. Around the CL, BV/TV decreased significantly with age; DA was negatively correlated with BV/TV and had a tendency to increase with age. Between areas above and below the CL, there was a BV/TV gradient and both BV/TVs decreased in parallel with age.


Our findings regarding the contribution of micro-CT to the evaluation of trabecular bone could be a promising research approach for application in a larger study population.


Forensic science Forensic anthropology Trabecular bone Age at death MSCT Micro-CT Auricular surface 


  1. 1.
    Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231–239CrossRefPubMedGoogle Scholar
  2. 2.
    Lovejoy CO, Meindl RS, Pryzbeck TR, Mensforth RP (1985) Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. Am J Phys Anthropol 68:15–28CrossRefPubMedGoogle Scholar
  3. 3.
    Rougé-Maillart C, Vielle B, Jousset N, Chappard D, Telmon N, Cunha E (2009) Development of a method to estimate skeletal age at death in adults using the acetabulum and the auricular surface on a Portuguese population. Forensic Sci Int 188:91–95CrossRefPubMedGoogle Scholar
  4. 4.
    Wolff J (1892) Das Gesetz der Transformation des Knochen. Hirschwald Verlag, BerlinGoogle Scholar
  5. 5.
    Pontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrimsson B, Cooper DM (2006) Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. J Exp Biol 209:57–65CrossRefPubMedGoogle Scholar
  6. 6.
    Chappard D, Baslé MF, Legrand E, Audran M (2008) Trabecular bone microarchitecture: a review. Morphologie 92:162–170CrossRefPubMedGoogle Scholar
  7. 7.
    Lai YM, Qin L, Yeung HY, Lee KK, Chan KM (2005) Regional differences in trabecular BMD and micro-architecture of weight-bearing bone under habitual gait loading–a pQCT and microCT study in human cadavers. Bone 37:274–282CrossRefPubMedGoogle Scholar
  8. 8.
    Ryan TM, Ketcham RA (2005) Angular orientation of trabecular bone in the femoral head and its relationship to hip joint loads in leaping primates. J Morphol 265:249–263CrossRefPubMedGoogle Scholar
  9. 9.
    Barak MM, Lieberman DE, Hublin JJ (2011) A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone 49:1141–1151CrossRefPubMedGoogle Scholar
  10. 10.
    Acsadi G, Nemeskeri L (1970) History of human life span and mortality. Akademiai Kiado, BudapestGoogle Scholar
  11. 11.
    Correnti V (1955) la basi morfomeccaniche della structtura dell’osso iliaco. Riv Antrop 289–336.Google Scholar
  12. 12.
    Dalstra M, Huiskes R (1995) Load transfer across the pelvic bone. J Biomech 28:715–724CrossRefPubMedGoogle Scholar
  13. 13.
    Versier G (2009) Physiologie de la sacro-iliaque. Rev Rhum 76:734–740CrossRefGoogle Scholar
  14. 14.
    Martinon-Torres M (2003) Quantifying trabecular orientation in the pelvic cancellous bone of modern humans, chimpanzees, and the Kebara 2 Neanderthal. Am J Hum Biol 15:647–661CrossRefPubMedGoogle Scholar
  15. 15.
    Rook L, Bondioli L, Kohler M, Moya-Sola S, Macchiarelli R (1999) Oreopithecus was a bipedal ape after all: evidence from the iliac cancellous architecture. Proc Natl Acad Sci U S A 96:8795–8799CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tobias PV (1998) Ape-like australopithecus after seventy years: was it a hominid? J R Anthropol Inst 4:283–308CrossRefGoogle Scholar
  17. 17.
    Lespessailles É, Chappard C, Bonnet N, Benhamou CL (2006) Imagerie de la microarchitecture osseuse. Rev Rhum 73:435–443CrossRefGoogle Scholar
  18. 18.
    Muller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Ruegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66CrossRefPubMedGoogle Scholar
  19. 19.
    Barrier P, Dedouit F, Braga J, Joffre F, Rouge D, Rousseau H, Telmon N (2009) Age at death estimation using multislice computed tomography reconstructions of the posterior pelvis. J Forensic Sci 54:773–778CrossRefPubMedGoogle Scholar
  20. 20.
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRefGoogle Scholar
  22. 22.
    Laib A, Kumer JL, Majumdar S, Lane NE (2001) The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int 12:936–941CrossRefPubMedGoogle Scholar
  23. 23.
    Link TM, Majumdar S, Konermann W, Meier N, Lin JC, Newitt D, Ouyang X, Peters PE, Genant HK (1997) Texture analysis of direct magnification radiographs of vertebral specimens: correlation with bone mineral density and biomechanical properties. Acad Radiol 4:167–176CrossRefPubMedGoogle Scholar
  24. 24.
    Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941CrossRefPubMedGoogle Scholar
  25. 25.
    Benhamou CL, Pothuaud L, Lespessailles E (2000) Caractérisation de la microarchitecture trabéculaire osseuse par analyse de texture. ITBM-RBM 21:351–358CrossRefGoogle Scholar
  26. 26.
    Isaksson H, Toyras J, Hakulinen M, Aula AS, Tamminen I, Julkunen P, Kroger H, Jurvelin JS (2011) Structural parameters of normal and osteoporotic human trabecular bone are affected differently by microCT image resolution. Osteoporos Int 22:167–177CrossRefPubMedGoogle Scholar
  27. 27.
    Kim DG, Christopherson GT, Dong XN, Fyhrie DP, Yeni YN (2004) The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone 35:1375–1382CrossRefPubMedGoogle Scholar
  28. 28.
    Chappard C, Marchadier A, Benhamou CL (2008) Side-to-side and within-side variability of 3D bone microarchitecture by conventional micro-computed tomography of paired iliac crest biopsies. Bone 43:203–208CrossRefPubMedGoogle Scholar
  29. 29.
    Fazzalari NL, Parkinson IH (1998) Femoral trabecular bone of osteoarthritic and normal subjects in an age and sex matched group. Osteoarthritis Cartilage 6:377–382CrossRefPubMedGoogle Scholar
  30. 30.
    Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409.Google Scholar
  31. 31.
    Ding M, Odgaard A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg 85-BGoogle Scholar
  32. 32.
    Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD (2005) Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 16:1184–1192CrossRefPubMedGoogle Scholar
  33. 33.
    Bouvard B, Hoppe E, Chappard D, Audran M (2010) Ostéoporose masculine. Encycl Med Chir App Locom (pp. FASC. 14062 A14010.).Google Scholar
  34. 34.
    Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30:759–764CrossRefPubMedGoogle Scholar
  35. 35.
    Ciarelli TE, Fyhrie DP, Schaffler MB, Goldstein SA (2000) Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls. J Bone Miner Res 15:32–40CrossRefPubMedGoogle Scholar
  36. 36.
    Cortet B, Marchandise X (2001) Bone microarchitecture and mechanical resistance. Joint Bone Spine 68:297–305CrossRefGoogle Scholar
  37. 37.
    Newitt DC, Majumdar S, van Rietbergen B, von Ingersleben G, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17CrossRefPubMedGoogle Scholar
  38. 38.
    Zebaze RM, Seeman E (2005) Cortical stability of the femoral neck and hip fracture risk. Lancet 366:1523, author reply 1524–1525CrossRefPubMedGoogle Scholar
  39. 39.
    Guggenbuhl P, Chappard D, Garreau M, Bansard JY, Chales G, Rolland Y (2008) Reproducibility of CT-based bone texture parameters of cancellous calf bone samples: influence of slice thickness. Eur J Radiol 67:514–520CrossRefPubMedGoogle Scholar
  40. 40.
    Guggenbuhl P, Bodic F, Hamel L, Basle MF, Chappard D (2006) Texture analysis of X-ray radiographs of iliac bone is correlated with bone micro-CT. Osteoporos Int 17:447–454CrossRefPubMedGoogle Scholar
  41. 41.
    Diederichs G, Link T, Marie K, Huber M, Rogalla P, Burghardt A, Majumdar S, Issever A (2008) Feasibility of measuring trabecular bone structure of the proximal femur using 64-slice multidetector computed tomography in a clinical setting. Calcif Tissue Int 83:332–341CrossRefPubMedGoogle Scholar
  42. 42.
    Diederichs G, Link TM, Kentenich M, Schwieger K, Huber MB, Burghardt AJ, Majumdar S, Rogalla P, Issever AS (2009) Assessment of trabecular bone structure of the calcaneus using multi-detector CT: correlation with microCT and biomechanical testing. Bone 44:976–983CrossRefPubMedGoogle Scholar
  43. 43.
    Bauer JS, Issever AS, Fischbeck M, Burghardt A, Eckstein F, Rummeny EJ, Majumdar S, Link TM (2004) Multislice-CT for structure analysis of trabecular bone - a comparison with micro-CT and biomechanical strength. Röfo 176:709–718PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Céline Deguette
    • 1
    • 2
  • Daniel Chappard
    • 2
  • Hélène Libouban
    • 2
  • Guillaume Airagnes
    • 3
    • 6
  • Clotilde Rouge-Maillart
    • 1
    • 2
  • Norbert Telmon
    • 4
    • 5
  1. 1.CHU Angers, Department of Forensic MedicineLUNAM UniversitéAngers CedexFrance
  2. 2.GEROM Groupe Etudes Remodelage Osseux et bioMatériauxLUNAM Université, IRIS-IBS Institut de Biologie en Santé, CHU d’AngersAngers CedexFrance
  3. 3.AP-HP, Department of PsychiatryHôpitaux Universitaires Paris OuestParisFrance
  4. 4.Laboratoire Anthropologie Moléculaire et Imagerie de synthèseUniversité Paul SabatierToulouse CedexFrance
  5. 5.Department of Forensic MedicineCHU Toulouse RangueilToulouse CedexFrance
  6. 6.Faculté de MédecineUniversité Paris Descartes, Sorbonne Paris CitéParisFrance

Personalised recommendations