Distribution of artifactual gas on post-mortem multidetector computed tomography (MDCT)

Abstract

Purpose

We investigated the incidence and distribution of post-mortem gas detected with multidetector computed tomography (MDCT) to identify factors that could distinguish artifactual gas from cardiac air embolism.

Material and methods

MDCT data of 119 cadavers were retrospectively examined. Gas was semiquantitatively assessed in selected blood vessels, organs, and body spaces (82 total sites).

Results

Seventy-four of the 119 cadavers displayed gas (62.2%; CI 95% 52.8–70.9), and 56 (75.7%) displayed gas in the heart. Most gas was detected in the hepatic parenchyma (40%), right heart (38% ventricle, 35% atrium), inferior vena cava (30% infrarenally, 26% suprarenally), hepatic veins (26% left, 29% middle, 22% right), and portal spaces (29%). Male cadavers displayed gas more frequently than female cadavers. Gas was detected 5–84 hours after death; therefore, the post-mortem interval could not reliably predict gas distribution (rho = 0.719, p < 0.0001). We found that a large amount of putrefaction-generated gas in the right heart was associated with aggregated gas bubbles in the hepatic parenchyma (sensitivity = 100%, specificity = 89.7%). In contrast, gas in the left heart (sensitivity = 41.7%, specificity = 100%) or in periumbilical subcutaneous tissues (sensitivity = 50%, specificity = 96.3%) could not predict gas due to putrefaction.

Conclusion

This study is the first to show that the appearance of post-mortem gas follows a specific distribution pattern. An association between intracardiac gas and hepatic parenchymal gas could distinguish between post-mortem-generated gas and vital air embolism. We propose that this finding provides a key for diagnosing death due to cardiac air embolism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    O’Donnell C, Woodford N (2008) Post-mortem radiology–a new sub-speciality? Clin Radiol 63(11):1189–1194

    PubMed  Article  Google Scholar 

  2. 2.

    O’Donnell C, Rotman A, Collett S, Woodford N (2007) Current status of routine post-mortem CT in Melbourne, Australia. Forensic Sci Med Pathol 3(3):226–232

    Article  Google Scholar 

  3. 3.

    Losasso TJ, Muzzi DA, Dietz NM, Cucchiara RF (1992) Fifty percent nitrous oxide does not increase the risk of venous air embolism in neurosurgical patients operated upon in the sitting position. Anesthesiology 77(1):21–30

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Papadopoulos G, Kuhly P, Brock M, Rudolph KH, Link J, Eyrich K (1994) Venous and paradoxical air embolism in the sitting position. a prospective study with transoesophageal echocardiography. Acta Neurochir 126(2–4):140–143

    Article  CAS  Google Scholar 

  5. 5.

    Palmon S, Moore L, Lundberg J, Toung T (1997) Venous air embolism: a review. J Clin Anesth 9(3):252–257

    Article  Google Scholar 

  6. 6.

    Muth C, Shank E (2000) Gas embolism. N Engl J Med 342(7):476–482

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Tan B, Saunier C, Cotton F, Gueugniaud P, Piriou V (2008) Thoracoabdominal CT scan: a useful tool for the diagnosis of air embolism during an endoscopic retrograde cholangiopancreatography. Ann Fr Anesth Rèanim 27(3):240–243

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Helmberger TK, Roth U, Empen K (2002) Massive air embolism during interventional laser therapy of the liver: successful resuscitation without chest compression. Cardiovasc Interv Radiol 25(4):335–336

    Article  Google Scholar 

  9. 9.

    Grabherr S, Lesta MDM, Rizzo E, Mangin P, Bollmann M (2008) Forensic imaging. Rev Méd Suisse 4(164):1609–1614

    PubMed  Google Scholar 

  10. 10.

    Bolliger SA, Thali MJ, Ross S, Buck U, Naether S, Vock P (2008) Virtual autopsy using imaging: bridging radiologic and forensic sciences. a review of the Virtopsy and similar projects. Eur Radiol 18(2):273–282

    PubMed  Article  Google Scholar 

  11. 11.

    Paperno S, Riepert T, Krug B, Rothschild MA, Schultes A, Staak M, Lackner L (2005) Value of postmortem computed tomography in comparison to autopsy. Rofo 177(1):130–136

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Payne-James J (2003) Forensic medicine: clinical and pathological aspects. Greenwich Medical Media, San Francisco

    Google Scholar 

  13. 13.

    Aghayev E, Yen K, Sonnenschein M, Jackowski C, Thali M, Vock P, Dirnhofer R (2005) Pneumomediastinum and soft tissue emphysema of the neck in postmortem CT and MRI; a new vital sign in hanging? Forensic Sci Int 153(2–3):181–188

    PubMed  Article  Google Scholar 

  14. 14.

    Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics 26(5):1305–1333

    PubMed  Article  Google Scholar 

  15. 15.

    Thali MJ, Jackowski C, Oesterhelweg L, Ross SG, Dirnhofer R (2007) VIRTOPSY–the Swiss virtual autopsy approach. Leg Med (Tokyo) 9(2):100–104

    Article  Google Scholar 

  16. 16.

    Jackowski C, Thali M, Sonnenschein M, Aghayev E, Yen K, Dirnhofer R, Vock P (2004) Visualization and quantification of air embolism structure by processing postmortem MSCT data. J Forensic Sci 49(6):1339–1342

    PubMed  Article  Google Scholar 

  17. 17.

    Shiotani S, Kohno M, Ohashi N, Atake S, Yamazaki K, Nakayama H (2005) Cardiovascular gas on non-traumatic postmortem computed tomography (PMCT): the influence of cardiopulmonary resuscitation. Radiat Med 23(4):225–229

    PubMed  Google Scholar 

  18. 18.

    Kauczor HU, Riepert T, Wolcke B, Lasczkowski G, Mildenberger P (1995) Fatal venous air embolism: proof and volumetry by helical CT. Eur Radiol 21:155–157

    Article  CAS  Google Scholar 

  19. 19.

    Frey S (1929) Luftembolie. Ergeb Chir 22:95–161

    Google Scholar 

  20. 20.

    Bajanowski B, West A, Brinkmann B (1998) Proof of fatal air embolism. Int J Leg Med 111(4):208–211

    Article  CAS  Google Scholar 

  21. 21.

    Mercier L (1837) Observation sur l'introduction de l'air dans les veines et sur la manière dont il produit la mort. Gaz Med 5:481–487

    Google Scholar 

  22. 22.

    Dyrenfurth F (1924) Zur Technik der Feststellung des Todes an Luftembolie. Dtsch Z Gerichtl Med 3:145–146

    Article  Google Scholar 

  23. 23.

    Jackowski C, Sonnenschein M, Thali MJ, Aghayev E, Yen K, Dirnhofer R, Vock P (2007) Intrahepatic gas at postmortem computed tomography: forensic experience as a potential guide for in vivo trauma imaging. J Trauma 62(4):979–988

    PubMed  Article  Google Scholar 

  24. 24.

    Brinkmann B (2003) Handbuch gerichtliche Medizin. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Richard Dirnhofer for his experienced assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Coraline Egger.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(WMV 1034 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Egger, C., Bize, P., Vaucher, P. et al. Distribution of artifactual gas on post-mortem multidetector computed tomography (MDCT). Int J Legal Med 126, 3–12 (2012). https://doi.org/10.1007/s00414-010-0542-5

Download citation

Keywords

  • Forensic medicine
  • Computed tomography
  • Post-mortem changes
  • Putrefaction
  • Gas embolism