Skip to main content
Log in

Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In mammalian oocytes, proper chromosome segregation at the first meiotic division is dictated by the presence and site of homologous chromosome recombination, which takes place in fetal life. Our current understanding of how homologous chromosomes find each other and initiate synapsis, which is prerequisite for homologous recombination, is limited. It is known that chromosome telomeres are anchored into the nuclear envelope (NE) at the early meiotic prophase I (MPI) and move along NE to facilitate homologous chromosome search and pairing. However, the mouse (Mus musculus) carries all acrocentric chromosomes with one telomeric end close to the centromere (subcentromeric telomere; C-telomere) and the other far away from the centromere (distal telomere; D-telomere), and how C- and D-telomeres participate in chromosome pairing and synapsis during the MPI progression is not well understood. Here, we found in the mouse oocyte that C- and D-telomeres transiently clustered in one area, but D-telomeres soon separated together from C-telomeres and then dispersed to preferentially initiate synapsis, while C-telomeres remained in clusters and synapsed at the last. In the Spo11 null oocyte, which is deficient in SPO11-dependent DSBs formation and homologous synapsis, the pattern of C- and D-telomere clustering and resolution was not affected, but synapsis was more frequently initiated at C-telomeres. These results suggest that SPO11 suppresses the early synapsis between C-telomeres in clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrey P, Kiêu K, Kress C, Lehmann G, Tirichine L, Liu Z, Biot E, Adenot P-G, Hue-Beauvais C, Houba-Hérin N (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Com Biol 6:e1000853

    Article  CAS  Google Scholar 

  • Ashley T, Plug AW, Xu J, Solari AJ, Reddy G, Golub EI, Ward DC (1995) Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates. Chromosoma 104:19–28

    Article  CAS  PubMed  Google Scholar 

  • Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    Article  CAS  PubMed  Google Scholar 

  • Boateng KA, Bellani MA, Gregoretti IV, Pratto F, Camerini-Otero RD (2013) Homologous pairing preceding SPO11-mediated double-strand breaks in mice. Dev Cell 24:196–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolcun-Filas E, Costa Y, Speed R, Taggard M, Benavente R, De Rooij DG (2007) SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol 176:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brick K, Thibault-Sennett S, Smagulova F, Lam KW, Pu Y, Pratto F, Camerini-Otero RD, Petukhova GV (2018) Extensive sex differences at the initiation of genetic recombination. Nature 561:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannavo E, Sanchez A, Anand R, Ranjha L, Hugener J, Adam C, Acharya A, Weyland N, Aran-Guiu X, Charbonnier J-B, Hoffmann ER, Borde V, Matos J, Cejka P (2020) Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 586:618–622

    Article  CAS  PubMed  Google Scholar 

  • Canudas S, Smith S (2009) Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J Cell Biol 187:165–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69

    Article  CAS  PubMed  Google Scholar 

  • Cole F, Kauppi L, Lange J, Roig I, Wang R, Keeney S, Jasin M (2012) Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat Cell Biol 14:424–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Massy B (2013) Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 47:563–599

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M (2007) SUN1 is required for telomre attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–872

    Article  CAS  PubMed  Google Scholar 

  • Garagna S, Page J, Fernandez-Donoso R, Zuccotti M, Searle JB (2014) The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 123:529–544

    Article  PubMed  Google Scholar 

  • Gerton JL, Hawley RS (2005) Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat Rev Genet 6:477–487

    Article  CAS  PubMed  Google Scholar 

  • Gropp A, Winking H, Zech L, Müller H (1972) Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 39:265–288

    Article  CAS  PubMed  Google Scholar 

  • Gruhn JR, Al-Asmar N, Fasnacht R, Maylor-Hagen H, Peinado V, Rubio C, Broman KW, Hunt PA, Hassold T (2016) Correlations between synaptic initiation and meiotic recombination: a study of humans and mice. Am J Hum Genet 98:102–115

    Article  CAS  PubMed  Google Scholar 

  • Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, Nikiforov D, Chan AC-H, Newnham LJ, Vogel I (2019) Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365:1466–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillon H, de Massy B (2002) An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat Genet 32:296–299

    Article  CAS  PubMed  Google Scholar 

  • Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    Article  CAS  PubMed  Google Scholar 

  • Guiraldelli MF, Eyster C, Wilkerson JL, Dresser ME, Pezza RJ (2013) Mouse HFM1/Mer3 is required for crossover formation and complete synapsis of homologous chromosomes during meiosis. PLoS Genet 9:e1003383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  CAS  PubMed  Google Scholar 

  • Klutstein M, Fennell A, Fernández-Álvarez A, Cooper JP (2015) The telomere bouquet regulates meiotic centromere assembly. Nat Cell Biol 17:458–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler KE, Millie EA, Cherry JP, Burgoyne PS, Evens EP, Hunt PA, Hassold TJ (2002) Sex-specific differences in meiotic chromosome segregation revealed by dicentric bridge resolution in mice. Genetics 162:1367–1379

    PubMed  PubMed Central  Google Scholar 

  • Koszul R, Kleckner N (2009) Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol 19:716–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-Y, Horn HF, Stewart CL, Burke B, Bolcun-Filas E, Schimenti JC, Dresser ME, Pezza RJ (2015) Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep 11:551–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebe B, Alsheimer M, Höög C, Benavente R, Scherthan H (2004) Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell 15:827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Perez E, Colaiacova MP (2009) Distribution of meiotic recombination events: talking to your neighbors. Curr Op Genet Dev 19:105–112

    Article  CAS  PubMed  Google Scholar 

  • Moens PB, Heyting C, Dietrich AJJ, van Raamsdonk W, Chen Q (1987) Synaptonemal complex antigen location and conservation. J Cell Biol 105:93–103

    Article  CAS  PubMed  Google Scholar 

  • Moens PB, Marcon E, Shore JS, Kochakpour N, Spyropoulos B (2007) Initiation and resolution of interhomolog connections: crossover and non-crossover sites along mouse synaptonemal complexes. J Cell Sci 120:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Morimoto A, Shibuya H, Zhu X, Kim J, K-i I, Han M, Watanabe Y (2012) A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J Cell Biol 198:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neale MJ, Keeney S (2006) Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, Griffin DK, Sage K, Summers MC, Thornhill AR (2015) Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet 47:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowski WP, Cande WZ (2005) Coordinating the events of the meiotic prophase. Trends Cell Biol 15:674–681

    Article  CAS  PubMed  Google Scholar 

  • Remeseiro S, Cuadrado A, Carretero M, Martínez P, Drosopoulos WC, Cañamero M, Schildkraut CL, Blasco MA, Losada A (2012) Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J 31:2076–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds A, Qiao H, Yang Y, Chen JK, Jackson N, Biswas K, Holloway JK, Baudat F, de Massy B, Wang J (2013) RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat Genet 45:269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockmill B, Roeder GS (1998) Telomere-mediated chromosome pairing during meiosis in budding yeast. Genes Dev 12:2574–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    Article  CAS  PubMed  Google Scholar 

  • Saferali A, Berlivet S, Schimenti J, Bartolomei MS, Taketo T, Naumova AK (2010) Defective imprint resetting in carriers of Robertsonian translocation Rb (8.12). Mamm Genome 21:377–387

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H (2007) Telomere attachment and clustering during meiosis. Cell Mol Life Sci 64:117–124

    Article  CAS  PubMed  Google Scholar 

  • Scherthan H, Weich S, Schwegler H, Heyting C, Härle M, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134:1109–1125

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Watanabe Y (2014) The meiosis-specific modification of mammalian telomeres. Cell Cycle 13:2024–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya H, Ishiguro K-i, Watanabe Y (2014a) The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat Cell Biol 16:145–156

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Morimoto A, Watanabe Y (2014b) The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet 10:e1004821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shibuya H, Hernández-Hernández A, Morimoto A, Negishi L, Höög C, Watanabe Y (2015) MAJIN links telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell 163:1252–1266

    Article  CAS  PubMed  Google Scholar 

  • Taketo T (2012) Microspread oocyte preparations for the analysis of meiotic prophase progression with improved recovery by cytospin centrifugation. Methods Mol Biol 825:173–181

    Article  CAS  PubMed  Google Scholar 

  • Tankimanova M, Hulten MA, Tease C (2004) The initiation of homologous chromosome synapsis in mouse fetal oocytes is not directly driven by centromere and telomere clustering in the bouquet. Cytogenet Genome Res 105:172–181

    Article  CAS  PubMed  Google Scholar 

  • Trelles-Sticken E, Loidl J, Scherthan H (1999) Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112:651–658

    CAS  PubMed  Google Scholar 

  • Trelles-Sticken E, Dresser ME, Scherthan H (2000) Meiotic telomere protein Ndj1p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing. J Cell Biol 151:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace BMN, Searle JB, Everett CA (1992) Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone; a comparison between "simple" Robertsonian heterozygotes and homozygotes. Cytogenet Cell Genet 61:211–220

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Liu J-G, Hoja M-R, Wilbertz J, Nordqvist K, Höög C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–1118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Thomas Boudier (Université Pierre et Marie Curie, France) for his advice on telomere clustering analyses.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This work was partially supported by the grants from the Natural Sciences and Engineering Research Council of Canada (NSERC 77914) and Canadian Institutes of Health Research (CIHR, MOP-137028) to TT. PK received the McGill Center for Research in Reproduction and Development (CRRD) studentship.

Author information

Authors and Affiliations

Authors

Contributions

T.T. directed the study. T.T. and P.K. contributed the design and P.K. performed the experiments. T.T. and P.K. wrote the paper.

Corresponding author

Correspondence to Teruko Taketo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, P., Taketo, T. Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte. Chromosoma 130, 41–52 (2021). https://doi.org/10.1007/s00412-021-00752-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-021-00752-1

Keywords

Navigation