Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte

Abstract

In mammalian oocytes, proper chromosome segregation at the first meiotic division is dictated by the presence and site of homologous chromosome recombination, which takes place in fetal life. Our current understanding of how homologous chromosomes find each other and initiate synapsis, which is prerequisite for homologous recombination, is limited. It is known that chromosome telomeres are anchored into the nuclear envelope (NE) at the early meiotic prophase I (MPI) and move along NE to facilitate homologous chromosome search and pairing. However, the mouse (Mus musculus) carries all acrocentric chromosomes with one telomeric end close to the centromere (subcentromeric telomere; C-telomere) and the other far away from the centromere (distal telomere; D-telomere), and how C- and D-telomeres participate in chromosome pairing and synapsis during the MPI progression is not well understood. Here, we found in the mouse oocyte that C- and D-telomeres transiently clustered in one area, but D-telomeres soon separated together from C-telomeres and then dispersed to preferentially initiate synapsis, while C-telomeres remained in clusters and synapsed at the last. In the Spo11 null oocyte, which is deficient in SPO11-dependent DSBs formation and homologous synapsis, the pattern of C- and D-telomere clustering and resolution was not affected, but synapsis was more frequently initiated at C-telomeres. These results suggest that SPO11 suppresses the early synapsis between C-telomeres in clusters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Andrey P, Kiêu K, Kress C, Lehmann G, Tirichine L, Liu Z, Biot E, Adenot P-G, Hue-Beauvais C, Houba-Hérin N (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Com Biol 6:e1000853

    Article  CAS  Google Scholar 

  2. Ashley T, Plug AW, Xu J, Solari AJ, Reddy G, Golub EI, Ward DC (1995) Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates. Chromosoma 104:19–28

    CAS  PubMed  Article  Google Scholar 

  3. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    CAS  PubMed  Article  Google Scholar 

  4. Boateng KA, Bellani MA, Gregoretti IV, Pratto F, Camerini-Otero RD (2013) Homologous pairing preceding SPO11-mediated double-strand breaks in mice. Dev Cell 24:196–205

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Bolcun-Filas E, Costa Y, Speed R, Taggard M, Benavente R, De Rooij DG (2007) SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol 176:741–747

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Brick K, Thibault-Sennett S, Smagulova F, Lam KW, Pu Y, Pratto F, Camerini-Otero RD, Petukhova GV (2018) Extensive sex differences at the initiation of genetic recombination. Nature 561:338–342

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Cannavo E, Sanchez A, Anand R, Ranjha L, Hugener J, Adam C, Acharya A, Weyland N, Aran-Guiu X, Charbonnier J-B, Hoffmann ER, Borde V, Matos J, Cejka P (2020) Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 586:618–622

    CAS  PubMed  Article  Google Scholar 

  8. Canudas S, Smith S (2009) Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J Cell Biol 187:165–173

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y (2006) Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69

    CAS  PubMed  Article  Google Scholar 

  10. Cole F, Kauppi L, Lange J, Roig I, Wang R, Keeney S, Jasin M (2012) Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat Cell Biol 14:424–430

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. de Massy B (2013) Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 47:563–599

    PubMed  Article  CAS  Google Scholar 

  12. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M (2007) SUN1 is required for telomre attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–872

    CAS  PubMed  Article  Google Scholar 

  13. Garagna S, Page J, Fernandez-Donoso R, Zuccotti M, Searle JB (2014) The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 123:529–544

    PubMed  Article  Google Scholar 

  14. Gerton JL, Hawley RS (2005) Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat Rev Genet 6:477–487

    CAS  PubMed  Article  Google Scholar 

  15. Gropp A, Winking H, Zech L, Müller H (1972) Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma 39:265–288

    CAS  PubMed  Article  Google Scholar 

  16. Gruhn JR, Al-Asmar N, Fasnacht R, Maylor-Hagen H, Peinado V, Rubio C, Broman KW, Hunt PA, Hassold T (2016) Correlations between synaptic initiation and meiotic recombination: a study of humans and mice. Am J Hum Genet 98:102–115

    CAS  PubMed  Article  Google Scholar 

  17. Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, Nikiforov D, Chan AC-H, Newnham LJ, Vogel I (2019) Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365:1466–1469

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Guillon H, de Massy B (2002) An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat Genet 32:296–299

    CAS  PubMed  Article  Google Scholar 

  19. Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    CAS  PubMed  Article  Google Scholar 

  20. Guiraldelli MF, Eyster C, Wilkerson JL, Dresser ME, Pezza RJ (2013) Mouse HFM1/Mer3 is required for crossover formation and complete synapsis of homologous chromosomes during meiosis. PLoS Genet 9:e1003383

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    CAS  PubMed  Article  Google Scholar 

  22. Klutstein M, Fennell A, Fernández-Álvarez A, Cooper JP (2015) The telomere bouquet regulates meiotic centromere assembly. Nat Cell Biol 17:458–469

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Koehler KE, Millie EA, Cherry JP, Burgoyne PS, Evens EP, Hunt PA, Hassold TJ (2002) Sex-specific differences in meiotic chromosome segregation revealed by dicentric bridge resolution in mice. Genetics 162:1367–1379

    PubMed  PubMed Central  Google Scholar 

  24. Koszul R, Kleckner N (2009) Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol 19:716–724

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Lee C-Y, Horn HF, Stewart CL, Burke B, Bolcun-Filas E, Schimenti JC, Dresser ME, Pezza RJ (2015) Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep 11:551–563

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Liebe B, Alsheimer M, Höög C, Benavente R, Scherthan H (2004) Telomere attachment, meiotic chromosome condensation, pairing, and bouquet stage duration are modified in spermatocytes lacking axial elements. Mol Biol Cell 15:827–837

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Martinez-Perez E, Colaiacova MP (2009) Distribution of meiotic recombination events: talking to your neighbors. Curr Op Genet Dev 19:105–112

    CAS  PubMed  Article  Google Scholar 

  28. Moens PB, Heyting C, Dietrich AJJ, van Raamsdonk W, Chen Q (1987) Synaptonemal complex antigen location and conservation. J Cell Biol 105:93–103

    CAS  PubMed  Article  Google Scholar 

  29. Moens PB, Marcon E, Shore JS, Kochakpour N, Spyropoulos B (2007) Initiation and resolution of interhomolog connections: crossover and non-crossover sites along mouse synaptonemal complexes. J Cell Sci 120:1017–1027

    CAS  PubMed  Article  Google Scholar 

  30. Morimoto A, Shibuya H, Zhu X, Kim J, K-i I, Han M, Watanabe Y (2012) A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J Cell Biol 198:165–172

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Neale MJ, Keeney S (2006) Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442:153–158

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, Griffin DK, Sage K, Summers MC, Thornhill AR (2015) Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet 47:727–735

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Pawlowski WP, Cande WZ (2005) Coordinating the events of the meiotic prophase. Trends Cell Biol 15:674–681

    CAS  PubMed  Article  Google Scholar 

  34. Remeseiro S, Cuadrado A, Carretero M, Martínez P, Drosopoulos WC, Cañamero M, Schildkraut CL, Blasco MA, Losada A (2012) Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J 31:2076–2089

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Reynolds A, Qiao H, Yang Y, Chen JK, Jackson N, Biswas K, Holloway JK, Baudat F, de Massy B, Wang J (2013) RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat Genet 45:269–278

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Rockmill B, Roeder GS (1998) Telomere-mediated chromosome pairing during meiosis in budding yeast. Genes Dev 12:2574–2586

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    CAS  PubMed  Article  Google Scholar 

  38. Saferali A, Berlivet S, Schimenti J, Bartolomei MS, Taketo T, Naumova AK (2010) Defective imprint resetting in carriers of Robertsonian translocation Rb (8.12). Mamm Genome 21:377–387

    CAS  PubMed  Article  Google Scholar 

  39. Scherthan H (2007) Telomere attachment and clustering during meiosis. Cell Mol Life Sci 64:117–124

    CAS  PubMed  Article  Google Scholar 

  40. Scherthan H, Weich S, Schwegler H, Heyting C, Härle M, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134:1109–1125

    CAS  PubMed  Article  Google Scholar 

  41. Shibuya H, Watanabe Y (2014) The meiosis-specific modification of mammalian telomeres. Cell Cycle 13:2024–2028

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Shibuya H, Ishiguro K-i, Watanabe Y (2014a) The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat Cell Biol 16:145–156

    CAS  PubMed  Article  Google Scholar 

  43. Shibuya H, Morimoto A, Watanabe Y (2014b) The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet 10:e1004821

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Shibuya H, Hernández-Hernández A, Morimoto A, Negishi L, Höög C, Watanabe Y (2015) MAJIN links telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell 163:1252–1266

    CAS  PubMed  Article  Google Scholar 

  45. Taketo T (2012) Microspread oocyte preparations for the analysis of meiotic prophase progression with improved recovery by cytospin centrifugation. Methods Mol Biol 825:173–181

    CAS  PubMed  Article  Google Scholar 

  46. Tankimanova M, Hulten MA, Tease C (2004) The initiation of homologous chromosome synapsis in mouse fetal oocytes is not directly driven by centromere and telomere clustering in the bouquet. Cytogenet Genome Res 105:172–181

    CAS  PubMed  Article  Google Scholar 

  47. Trelles-Sticken E, Loidl J, Scherthan H (1999) Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112:651–658

    CAS  PubMed  Google Scholar 

  48. Trelles-Sticken E, Dresser ME, Scherthan H (2000) Meiotic telomere protein Ndj1p is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing. J Cell Biol 151:95–106

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Wallace BMN, Searle JB, Everett CA (1992) Male meiosis and gametogenesis in wild house mice (Mus musculus domesticus) from a chromosomal hybrid zone; a comparison between "simple" Robertsonian heterozygotes and homozygotes. Cytogenet Cell Genet 61:211–220

    CAS  PubMed  Article  Google Scholar 

  50. Yuan L, Liu J-G, Hoja M-R, Wilbertz J, Nordqvist K, Höög C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–1118

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Thomas Boudier (Université Pierre et Marie Curie, France) for his advice on telomere clustering analyses.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This work was partially supported by the grants from the Natural Sciences and Engineering Research Council of Canada (NSERC 77914) and Canadian Institutes of Health Research (CIHR, MOP-137028) to TT. PK received the McGill Center for Research in Reproduction and Development (CRRD) studentship.

Author information

Affiliations

Authors

Contributions

T.T. directed the study. T.T. and P.K. contributed the design and P.K. performed the experiments. T.T. and P.K. wrote the paper.

Corresponding author

Correspondence to Teruko Taketo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazemi, P., Taketo, T. Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte. Chromosoma 130, 41–52 (2021). https://doi.org/10.1007/s00412-021-00752-1

Download citation

Keywords

  • Oocyte
  • Meiosis
  • Homologous chromosome synapsis
  • Telomere
  • Centromere
  • SPO11