Skip to main content
Log in

Chmp4c is required for stable kinetochore-microtubule attachments

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Formation of stable kinetochore-microtubule attachments is essential for accurate chromosome segregation in human cells and depends on the NDC80 complex. We recently showed that Chmp4c, an endosomal sorting complex required for transport protein involved in membrane remodelling, localises to prometaphase kinetochores and promotes cold-stable kinetochore microtubules, faithful chromosome alignment and segregation. In the present study, we show that Chmp4c associates with the NDC80 components Hec1 and Nuf2 and is required for optimal NDC80 stability and Hec1-Nuf2 localisation to kinetochores in prometaphase. However, Chmp4c-depletion does not cause a gross disassembly of outer or inner kinetochore complexes. Conversely, Nuf2 is required for Chmp4c kinetochore targeting. Constitutive Chmp4c kinetochore tethering partially rescues cold-stable microtubule polymers in cells depleted of the endogenous Nuf2, showing that Chmp4c also contributes to kinetochore-microtubule stability independently of regulating Hec1 and Nuf2 localisation. Chmp4c interacts with tubulin in cell extracts, and binds and bundles microtubules in vitro through its highly basic N-terminal region (amino acids 1–77). Furthermore, the N-terminal region of Chmp4c is required for cold-stable kinetochore microtubules and efficient chromosome alignment. We propose that Chmp4c promotes stable kinetochore-microtubule attachments by regulating Hec1–Nuf2 localisation to kinetochores in prometaphase and by binding to spindle microtubules. These results identify Chmp4c as a novel protein that regulates kinetochore-microtubule interactions to promote accurate chromosome segregation in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E (2010) The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467:805–810

    Article  CAS  Google Scholar 

  • Bharadwaj R, Qi W, Yu HT (2004) Identification of two novel components of the human NDC80 kinetochore complex. J Biol Chem 279:13076–13085

    Article  CAS  Google Scholar 

  • Brinkley BR, Cartwright J (1975) Cold-labile and cold-stable microtubules in mitotic spindle of mammalian cells. Ann N Y Acad Sci 253:428–439

    Article  CAS  Google Scholar 

  • Campsteijn C, Vietri M, Stenmark H (2016) Novel ESCRT functions in cell biology: spiraling out of control? CurrOpin Cell Biol 41:1–8

    CAS  Google Scholar 

  • Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997

    Article  CAS  Google Scholar 

  • Ciferri C, de Luca J, Monzani S, Ferrari KJ, Ristic D, Wyman C, Stark H, Kilmartin J, Salmon ED, Musacchio A (2005) Architecture of the human Ndc80-Hec1 complex, a critical constituent of the outer kinetochore. J Biol Chem 280:29088–29095

    Article  CAS  Google Scholar 

  • Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, de Luca JG, de Wulf P, Salek M, Rappsilber J, Moores CA, Salmon ED, Musacchio A (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:427–439

    Article  CAS  Google Scholar 

  • DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED (2002) hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 159:549–555

    Article  CAS  Google Scholar 

  • DeLuca JG, Howell BJ, Canman JC, Hickey JM, Fang G, Salmon ED (2003) Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr Biol 13:2103–2109

    Article  CAS  Google Scholar 

  • DeLuca JG, Gall WE, Ciferri C, Cimini D, Musacchio A, Salmon ED (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127:969–982

    Article  CAS  Google Scholar 

  • Emanuele MJ, McCleland ML, Satinover DL, Stukenberg PT (2005) Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore. Mol Biol Cell 16:4882–4892

    Article  CAS  Google Scholar 

  • Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37

    Article  CAS  Google Scholar 

  • Friese A, Faesen AC, Huis in ‘t Veld PJ, Fischböck J, Prumbaum D, Petrovic A, Raunser S, Herzog F, Musacchio A (2016) Molecular requirements for the inter-subunit interaction and kinetochore recruitment of SKAP and Astrin. Nat Commun 7:11407

    Article  CAS  Google Scholar 

  • Hanisch A, Sillje HH, Nigg EA (2006) Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J 25:5504–5515

    Article  CAS  Google Scholar 

  • Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–2407

    Article  CAS  Google Scholar 

  • Joglekar AP, Bouck DC, Molk JN, Bloom KS, Salmon ED (2006) Molecular architecture of a kinetochore-microtubule attachment site. Nat Cell Biol 8:581–585

    Article  CAS  Google Scholar 

  • Jouvenet N, Zhadina M, Bieniasz PD, Simon SM (2011) Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol 13:394–401

    Article  CAS  Google Scholar 

  • Kern DM, Monda JK, Su KC, Wilson-Kubalek EM, Cheeseman IM (2017) Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. Elife 6:26866

    Article  Google Scholar 

  • Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840

    Article  CAS  Google Scholar 

  • Miller SA, Johnson ML, Stukenberg PT (2008) Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol 18:1785–1791

    Article  CAS  Google Scholar 

  • Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. Chromosoma 120:425–446

    Article  Google Scholar 

  • Petsalaki E, Dandoulaki M, Zachos G (2018) The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling. J Cell Biol 217:861–876

    Article  CAS  Google Scholar 

  • Schmidt JC, Arthanari H, Boeszoermenyi A, Dashkevich NM, Wilson-Kubalek EM, Monnier N, Markus M, Oberer M, Milligan RA, Bathe M, Wagner G, Grishchuk EL, Cheeseman IM (2012) The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev Cell 23:968–980

    Article  CAS  Google Scholar 

  • Sundin LJ, Guimaraes GJ, Deluca JG (2011) The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol Biol Cell 22:759–768

    Article  CAS  Google Scholar 

  • Suzuki A, Badger BL, Salmon ED (2015) A quantitative description of Ndc80 complex linkage to human kinetochores. Nat Commun 6:8161

    Article  Google Scholar 

  • Valverde R, Ingram J, Harrison SC (2016) Conserved tetramer junction in the kinetochore Ndc80 complex. Cell Rep 17:1915–1922

    Article  CAS  Google Scholar 

  • Varma D, Salmon ED (2012) The KMN protein network—chief conductors of the kinetochore orchestra. J Cell Sci 125:5927–5936

    Article  CAS  Google Scholar 

  • Wei RR, Sorger PK, Harrison SC (2005) Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A 102:5363–5367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Bieniasz, J. DeLuca, G. Kops, A. Musacchio and T. Zang for generously sharing reagents.

Funding

This work was supported by the Worldwide Cancer Research (grant 15-0008) and by the Fondation Santé (cycle 2017–2018). E.P. was supported by a postdoctoral fellowship from the Bodossaki Foundation and M.D. by the Worldwide Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

E.P., M.D. and G.Z. performed experiments and analysed the results. G.Z. and E.P. designed the study and wrote the paper.

Corresponding author

Correspondence to George Zachos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petsalaki, E., Dandoulaki, M. & Zachos, G. Chmp4c is required for stable kinetochore-microtubule attachments. Chromosoma 127, 461–473 (2018). https://doi.org/10.1007/s00412-018-0675-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-018-0675-8

Keywords

Navigation