Chromosoma

pp 1–10 | Cite as

The response to DNA damage in heterochromatin domains

Review
  • 176 Downloads

Abstract

Eukaryotic genomes are organized into chromatin, divided into structurally and functionally distinct euchromatin and heterochromatin compartments. The high level of compaction and the abundance of repeated sequences in heterochromatin pose multiple challenges for the maintenance of genome stability. Cells have evolved sophisticated and highly controlled mechanisms to overcome these constraints. Here, we summarize recent findings on how the heterochromatic state influences DNA damage formation, signaling, and repair. By focusing on distinct heterochromatin domains in different eukaryotic species, we highlight the heterochromatin contribution to the compartmentalization of DNA damage repair in the cell nucleus and to the repair pathway choice. We also describe the diverse chromatin alterations associated with the DNA damage response in heterochromatin domains and present our current understanding of their regulatory mechanisms. Finally, we discuss the biological significance and the evolutionary conservation of these processes.

Keywords

Chromatin reorganization DNA damage repair Heterochromatin Nuclear domains 

Notes

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adar S, Hu J, Lieb JD, Sancar A (2016) Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. Proc Natl Acad Sci U S A 13:E2124–E2133.  https://doi.org/10.1073/pnas.1603388113 CrossRefGoogle Scholar
  2. Alagoz M, Katsuki Y, Ogiwara H, Ogi T, Shibata A, Kakarougkas A, Jeggo P (2015) SETDB1, HP1 and SUV39 promote repositioning of 53BP1 to extend resection during homologous recombination in G2 cells. Nucleic Acids Res 43:7931–7944.  https://doi.org/10.1093/nar/gkv722 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500.  https://doi.org/10.1038/nrg.2016.59 CrossRefPubMedGoogle Scholar
  4. Allshire RC, Madhani HD (2017) Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19:229–244.  https://doi.org/10.1038/nrm.2017.119 CrossRefPubMedGoogle Scholar
  5. Amaral N, Ryu T, Li X, Chiolo I (2017) Nuclear dynamics of heterochromatin repair. Trends Genet 33:86–100.  https://doi.org/10.1016/j.tig.2016.12.004 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Aymard F, Aguirrebengoa M, Guillou E, Javierre BM, Bugler B, Arnould C, Rocher V, Iacovoni JS, Biernacka A, Skrzypczak M, Ginalski K, Rowicka M, Fraser P, Legube G (2017) Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol 24:353–361.  https://doi.org/10.1038/nsmb.3387 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci U S A 111:9169–9174.  https://doi.org/10.1073/pnas.1403565111 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Baldeyron C, Soria G, Roche D, Cook AJL, Almouzni G (2011) HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193:81–95.  https://doi.org/10.1083/jcb.201101030 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Batté A, Brocas C, Bordelet H, Hocher A, Ruault M, Adjiri A, Taddei A, Dubrana K (2017) Recombination at subtelomeres is regulated by physical distance, double-strand break resection and chromatin status. EMBO J 36:2609–2625.  https://doi.org/10.15252/embj.201796631 PubMedGoogle Scholar
  10. Bayona-Feliu A, Casas-Lamesa A, Reina O, Bernués J, Azorín F (2017) Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin. Nat Commun 8:283.  https://doi.org/10.1038/s41467-017-00338-5 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Belin BJ, Lee T, Mullins RD (2015) DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-½ that promotes efficient DNA repair. elife 4:e07735.  https://doi.org/10.7554/eLife.07735 PubMedCentralPubMedGoogle Scholar
  12. Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Löbrich M (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28:3413–3427.  https://doi.org/10.1038/emboj.2009.276 CrossRefPubMedCentralPubMedGoogle Scholar
  13. Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678.  https://doi.org/10.1038/nrg.2016.112 CrossRefPubMedGoogle Scholar
  14. Brunton H, Goodarzi AA, Noon AT, Shrikhande A, Hansen RS, Jeggo PA, Shibata A (2011) Analysis of human syndromes with disordered chromatin reveals the impact of heterochromatin on the efficacy of ATM-dependent G2/M checkpoint arrest. Mol Cell Biol 31:4022–4035.  https://doi.org/10.1128/MCB.05289-11 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Burgess RC, Burman B, Kruhlak MJ, Misteli T (2014) Activation of DNA damage response signaling by condensed chromatin. Cell Rep 9:1703–1717.  https://doi.org/10.1016/j.celrep.2014.10.060 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Canela A, Sridharan S, Sciascia N, Tubbs A, Meltzer P, Sleckman BP, Nussenzweig A (2016) DNA breaks and end resection measured genome-wide by end sequencing. Mol Cell 63:898–911.  https://doi.org/10.1016/j.molcel.2016.06.034 CrossRefPubMedGoogle Scholar
  17. Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, Huang SC, Mckinnon PJ, Aplan PD, Pommier Y, Aiden EL, Casellas R, Nussenzweig A (2017) Genome organization drives chromosome fragility. Cell 170:507–521.e18.  https://doi.org/10.1016/j.cell.2017.06.034 CrossRefPubMedGoogle Scholar
  18. Capozzo I, Iannelli F, Francia S, d’Adda di Fagagna F (2017) Express or repress? The transcriptional dilemma of damaged chromatin. FEBS J 284:2133–2147.  https://doi.org/10.1111/febs.14048 CrossRefPubMedGoogle Scholar
  19. Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–744.  https://doi.org/10.1016/j.cell.2011.02.012 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Colmenares SU, Swenson JM, Langley SA, Kennedy C, Costes SV, Karpen GH (2017) Drosophila histone demethylase KDM4A has enzymatic and non-enzymatic roles in controlling heterochromatin integrity. Dev Cell 42:156–169.e5.  https://doi.org/10.1016/j.devcel.2017.06.014 CrossRefPubMedGoogle Scholar
  21. Cowell IG, Sunter NJ, Singh PB et al (2007) gammaH2AX foci form preferentially in euchromatin after ionising-radiation. 2:e1057.  https://doi.org/10.1371/journal.pone.0001057
  22. Criscione SW, Teo YV, Neretti N (2016) The chromatin landscape of cellular senescence. Trends Genet 32:751–761.  https://doi.org/10.1016/j.tig.2016.09.005 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, Karaca E, Chiarle R, Skrzypczak M, Ginalski K, Pasero P, Rowicka M, Dikic I (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10:361–365.  https://doi.org/10.1038/nmeth.2408 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Dabin J, Fortuny A, Polo SE (2016) Epigenome maintenance in response to DNA damage. Mol Cell 62:712–727.  https://doi.org/10.1016/j.molcel.2016.04.006 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Dan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T, Ye X, Mou C, Wang L, Wang L, Yin Y, Yuan J, Zuo B, Wang F, Li Z, Pan X, Yin Z, Chen L, Keefe DL, Gagos S, Xiao A, Liu L (2014) Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev Cell 29:7–19.  https://doi.org/10.1016/j.devcel.2014.03.004 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Dinant C, Luijsterburg MS (2009) The emerging role of HP1 in the DNA damage response. Mol Cell Biol 29:6335–6340.  https://doi.org/10.1128/MCB.01048-09 CrossRefPubMedCentralPubMedGoogle Scholar
  27. Dion V, Gasser SM (2013) Chromatin movement in the maintenance of genome stability. Cell 152:1355–1364.  https://doi.org/10.1016/j.cell.2013.02.010 CrossRefPubMedGoogle Scholar
  28. Doksani Y, de Lange T (2016) Telomere-internal double-strand breaks are repaired by homologous recombination and PARP1/Lig3-dependent end-joining. Cell Rep 17:1646–1656.  https://doi.org/10.1016/j.celrep.2016.10.008 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Ellermeier C, Higuchi EC, Phadnis N, Holm L, Geelhood JL, Thon G, Smith GR (2010) RNAi and heterochromatin repress centromeric meiotic recombination. Proc Natl Acad Sci U S A 107:8701–8705.  https://doi.org/10.1073/pnas.0914160107 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Gaillard H, Aguilera A (2016) Transcription as a threat to genome integrity. Annu Rev Biochem 85:291–317.  https://doi.org/10.1146/annurev-biochem-060815-014908 CrossRefPubMedGoogle Scholar
  31. García-Nieto PE, Schwartz EK, King DA, Paulsen J, Collas P, Herrera RE, Morrison AJ (2017) Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J 36:2829–2843.  https://doi.org/10.15252/embj.201796717 CrossRefPubMedGoogle Scholar
  32. Garvin AJ, Densham RM, Blair-Reid SA, Pratt KM, Stone HR, Weekes D, Lawrence KJ, Morris JR (2013) The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair. EMBO Rep 14:975–983.  https://doi.org/10.1038/embor.2013.141 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Gendrel A-V, Heard E (2014) Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu Rev Cell Dev Biol 30:561–580.  https://doi.org/10.1146/annurev-cellbio-101512-122415 CrossRefPubMedGoogle Scholar
  34. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424.  https://doi.org/10.1038/ncb1386 CrossRefPubMedGoogle Scholar
  35. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177.  https://doi.org/10.1016/j.molcel.2008.05.017 CrossRefPubMedGoogle Scholar
  36. Goodarzi AA, Kurka T, Jeggo PA (2011) KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol 18:831–839.  https://doi.org/10.1038/nsmb.2077 CrossRefPubMedGoogle Scholar
  37. Han C, Srivastava AK, Cui T, Wang QE, Wani AA (2016) Differential DNA lesion formation and repair in heterochromatin and euchromatin. Carcinogenesis 37:129–138.  https://doi.org/10.1093/carcin/bgv247 CrossRefPubMedGoogle Scholar
  38. Hansen RK, Mund A, Poulsen SL, Sandoval M, Klement K, Tsouroula K, Tollenaere MAX, Räschle M, Soria R, Offermanns S, Worzfeld T, Grosse R, Brandt DT, Rozell B, Mann M, Cole F, Soutoglou E, Goodarzi AA, Daniel JA, Mailand N, Bekker-Jensen S (2016) SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat Cell Biol 18:1357–1366.  https://doi.org/10.1038/ncb3436 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Harding SM, Boiarsky JA, Greenberg RA (2015) ATM dependent silencing links nucleolar chromatin reorganization to DNA damage recognition. Cell Rep 13:251–259.  https://doi.org/10.1016/j.celrep.2015.08.085 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Heitz E (1928) Das Heterochromatin der Moose. Jahrb Wiss Bot 69:762–818Google Scholar
  41. Hu J, Adebali O, Adar S, Sancar A (2017) Dynamic maps of UV damage formation and repair for the human genome. Proc Natl Acad Sci U S A 114:6758–6763.  https://doi.org/10.1073/pnas.1706522114 PubMedCentralPubMedGoogle Scholar
  42. Jaco I, Canela A, Vera E, Blasco MA (2008) Centromere mitotic recombination in mammalian cells. J Cell Biol 181:885–892.  https://doi.org/10.1083/jcb.200803042 CrossRefPubMedCentralPubMedGoogle Scholar
  43. Jäger N, Schlesner M, Jones DTW, Raffel S, Mallm JP, Junge KM, Weichenhan D, Bauer T, Ishaque N, Kool M, Northcott PA, Korshunov A, Drews RM, Koster J, Versteeg R, Richter J, Hummel M, Mack SC, Taylor MD, Witt H, Swartman B, Schulte-Bockholt D, Sultan M, Yaspo ML, Lehrach H, Hutter B, Brors B, Wolf S, Plass C, Siebert R, Trumpp A, Rippe K, Lehmann I, Lichter P, Pfister SM, Eils R (2013) Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155:567–581.  https://doi.org/10.1016/j.cell.2013.09.042 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Jakob B, Splinter J, Conrad S, Voss KO, Zink D, Durante M, Löbrich M, Taucher-Scholz G (2011) DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 39:6489–6499.  https://doi.org/10.1093/nar/gkr230 CrossRefPubMedCentralPubMedGoogle Scholar
  45. Janssen A, Breuer GA, Brinkman EK, van der Meulen AI, Borden SV, van Steensel B, Bindra RS, LaRocque JR, Karpen GH (2016) A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes Dev 30:1645–1657.  https://doi.org/10.1101/gad.283028.116 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Jiricny J (2013) Postreplicative mismatch repair. Cold Spring Harb Perspect Biol 5:a012633.  https://doi.org/10.1101/cshperspect.a012633 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Kakarougkas A, Ismail A, Klement K, Goodarzi AA, Conrad S, Freire R, Shibata A, Lobrich M, Jeggo PA (2013) Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res 41:9719–9731.  https://doi.org/10.1093/nar/gkt729 CrossRefPubMedCentralPubMedGoogle Scholar
  48. Kalousi A, Soutoglou E (2016) Nuclear compartmentalization of DNA repair. Curr Opin Genet Dev 37:148–157.  https://doi.org/10.1016/j.gde.2016.05.013 CrossRefPubMedGoogle Scholar
  49. Kim J-A, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE (2007) Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 178:209–218.  https://doi.org/10.1083/jcb.200612031 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Klement K, Luijsterburg MS, Pinder JB, Cena CS, del Nero V, Wintersinger CM, Dellaire G, van Attikum H, Goodarzi AA (2014) Opposing ISWI- and CHD-class chromatin remodeling activities orchestrate heterochromatic DNA repair. J Cell Biol 207:717–733.  https://doi.org/10.1083/jcb.201405077 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46:931–954CrossRefPubMedGoogle Scholar
  52. Kulashreshtha M, Mehta IS, Kumar P, Rao BJ (2016) Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling. Nucleic Acids Res 44:8272–8291.  https://doi.org/10.1093/nar/gkw573 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Lee Y-H, Kuo C-Y, Stark JM, Shih HM, Ann DK (2013) HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Nucleic Acids Res 41:5784–5798.  https://doi.org/10.1093/nar/gkt231 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Lemaître C, Soutoglou E (2014) Double strand break (DSB) repair in heterochromatin and heterochromatin proteins in DSB repair. DNA Repair (Amst) 19:163–168.  https://doi.org/10.1016/j.dnarep.2014.03.015 CrossRefGoogle Scholar
  55. Lemaître C, Grabarz A, Tsouroula K, Andronov L, Furst A, Pankotai T, Heyer V, Rogier M, Attwood KM, Kessler P, Dellaire G, Klaholz B, Reina-San-Martin B, Soutoglou E (2014) Nuclear position dictates DNA repair pathway choice. Genes Dev 28:2450–2463.  https://doi.org/10.1101/gad.248369.114 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Lensing SV, Marsico G, Hänsel-Hertsch R, Lam EY, Tannahill D, Balasubramanian S (2016) DSBCapture: in situ capture and sequencing of DNA breaks. Nat Methods 13:855–857.  https://doi.org/10.1038/nmeth.3960 CrossRefPubMedCentralPubMedGoogle Scholar
  57. Lorković ZJ, Park C, Goiser M, Jiang D, Kurzbauer MT, Schlögelhofer P, Berger F (2017) Compartmentalization of DNA damage response between heterochromatin and euchromatin is mediated by distinct H2A histone variants. Curr Biol 27:1192–1199.  https://doi.org/10.1016/j.cub.2017.03.002 CrossRefPubMedGoogle Scholar
  58. Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T (2015) 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163:880–893.  https://doi.org/10.1016/j.cell.2015.09.057 CrossRefPubMedCentralPubMedGoogle Scholar
  59. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260.  https://doi.org/10.1038/38444 CrossRefPubMedGoogle Scholar
  60. Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LHF, Houtsmuller AB, Verschure PJ, van Driel R (2009) Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185:577–586.  https://doi.org/10.1083/jcb.200810035 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15:465–481.  https://doi.org/10.1038/nrm3822 CrossRefPubMedGoogle Scholar
  62. Matheson TD, Kaufman PD (2016) Grabbing the genome by the NADs. Chromosoma 125:361–371.  https://doi.org/10.1007/s00412-015-0527-8 CrossRefPubMedGoogle Scholar
  63. McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29.  https://doi.org/10.1038/nrm.2015.5 CrossRefPubMedGoogle Scholar
  64. Mladenov E, Magin S, Soni A, Iliakis G (2016) DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin Cancer Biol 37-38:51–64.  https://doi.org/10.1016/j.semcancer.2016.03.003 CrossRefPubMedGoogle Scholar
  65. Müller I, Merk B, Voss K-O, Averbeck N, Jakob B, Durante M, Taucher-Scholz G (2013) Species conserved DNA damage response at the inactive human X chromosome. Mutat Res 756:30–36.  https://doi.org/10.1016/j.mrgentox.2013.04.006 CrossRefPubMedGoogle Scholar
  66. Natale F, Rapp A, Yu W, Maiser A, Harz H, Scholl A, Grulich S, Anton T, Hörl D, Chen W, Durante M, Taucher-Scholz G, Leonhardt H, Cardoso MC (2017) Identification of the elementary structural units of the DNA damage response. Nat Commun 8:15760.  https://doi.org/10.1038/ncomms15760 CrossRefPubMedCentralPubMedGoogle Scholar
  67. Nikolov I, Taddei A (2015) Linking replication stress with heterochromatin formation. Chromosoma 125:523–533.  https://doi.org/10.1007/s00412-015-0545-6 CrossRefPubMedCentralPubMedGoogle Scholar
  68. Noon AT, Shibata A, Rief N, Löbrich M, Stewart GS, Jeggo PA, Goodarzi AA (2010) 553BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12:177–184.  https://doi.org/10.1038/ncb2017. CrossRefPubMedGoogle Scholar
  69. Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, Joti Y, Tomita M, Hibino K, Kanemaki MT, Wendt KS, Okada Y, Nagai T, Maeshima K (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell 67:282–293.e7.  https://doi.org/10.1016/j.molcel.2017.06.018 CrossRefPubMedGoogle Scholar
  70. Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC (2017) ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357:eaag0025.  https://doi.org/10.1126/science.aag0025 CrossRefPubMedCentralPubMedGoogle Scholar
  71. Padeken J, Zeller P, Gasser SM (2015) Repeat DNA in genome organization and stability. Curr Opin Genet Dev 31:12–19.  https://doi.org/10.1016/j.gde.2015.03.009 CrossRefPubMedGoogle Scholar
  72. Peng JC, Karpen GH (2008) Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18:204–211.  https://doi.org/10.1016/j.gde.2008.01.021 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Polak P, Lawrence MS, Haugen E, Stoletzki N, Stojanov P, Thurman RE, Garraway LA, Mirkin S, Getz G, Stamatoyannopoulos JA, Sunyaev SR (2014) Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat Biotechnol 32:71–75.  https://doi.org/10.1038/nbt.2778 CrossRefPubMedGoogle Scholar
  74. Ricci MA, Manzo C, García-Parajo MF, Lakadamyali M, Cosma MP (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158.  https://doi.org/10.1016/j.cell.2015.01.054 CrossRefPubMedGoogle Scholar
  75. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868CrossRefPubMedGoogle Scholar
  76. Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, Karpen GH, Chiolo I (2015) Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol 17:1401–1411.  https://doi.org/10.1038/ncb3258 CrossRefPubMedCentralPubMedGoogle Scholar
  77. Ryu T, Bonner MR, Chiolo I (2016) Cervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery. Nucleus 7:485–497.  https://doi.org/10.1080/19491034.2016.1239683 CrossRefPubMedCentralPubMedGoogle Scholar
  78. Saksouk N, Simboeck E, Déjardin J (2015) Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8:3.  https://doi.org/10.1186/1756-8935-8-3 CrossRefPubMedCentralPubMedGoogle Scholar
  79. Schoeftner S, Blasco MA (2009) A “higher order” of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 28:2323–2336.  https://doi.org/10.1038/emboj.2009.197 CrossRefPubMedCentralPubMedGoogle Scholar
  80. Schuster-Böckler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488:504–507.  https://doi.org/10.1038/nature11273 CrossRefPubMedGoogle Scholar
  81. Sinha M, Watanabe S, Johnson A, Moazed D, Peterson CL (2009) Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138:1109–1121.  https://doi.org/10.1016/j.cell.2009.07.013 CrossRefPubMedCentralPubMedGoogle Scholar
  82. Smeenk G, van Attikum H (2013) The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem 82:55–80.  https://doi.org/10.1146/annurev-biochem-061809-174504 CrossRefPubMedGoogle Scholar
  83. Smith KS, Liu LL, Ganesan S, Michor F, de S (2017) Nuclear topology modulates the mutational landscapes of cancer genomes. Nat Struct Mol Biol 24:1000–1006.  https://doi.org/10.1038/nsmb.3474 CrossRefPubMedGoogle Scholar
  84. Soria G, Almouzni G (2013) Differential contribution of HP1 proteins to DNA end resection and homology-directed repair. Cell Cycle 12:422–429.  https://doi.org/10.4161/cc.23215 CrossRefPubMedCentralPubMedGoogle Scholar
  85. Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A 102:13182–13187.  https://doi.org/10.1073/pnas.0504211102 CrossRefPubMedCentralPubMedGoogle Scholar
  86. Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR, Price BD (2009) Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol 11:1376–1382.  https://doi.org/10.1038/ncb1982 CrossRefPubMedCentralPubMedGoogle Scholar
  87. Supek F, Lehner B (2015) Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521:81–84.  https://doi.org/10.1038/nature14173 CrossRefPubMedCentralPubMedGoogle Scholar
  88. Takata H, Hanafusa T, Mori T, Shimura M, Iida Y, Ishikawa K, Yoshikawa K, Yoshikawa Y, Maeshima K (2013) Chromatin compaction protects genomic DNA from radiation damage. PLoS One 8:e75622.  https://doi.org/10.1371/journal.pone.0075622 CrossRefPubMedCentralPubMedGoogle Scholar
  89. Timashev LA, Babcock H, Zhuang X, de Lange T (2017) The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev 31:578–589.  https://doi.org/10.1101/gad.294108.116 CrossRefPubMedCentralPubMedGoogle Scholar
  90. Torres-Rosell J, Sunjevaric I, De Piccoli G et al (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9:923–931.  https://doi.org/10.1038/ncb1619 CrossRefPubMedGoogle Scholar
  91. Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13.  https://doi.org/10.1016/j.molcel.2007.09.011 CrossRefPubMedGoogle Scholar
  92. Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A, Ferrand A, Reina-San-Martin B, Soutoglou E (2016) Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Mol Cell 63:293–305.  https://doi.org/10.1016/j.molcel.2016.06.002 CrossRefPubMedGoogle Scholar
  93. van Sluis M, McStay B (2015) A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev 29:1151–1163.  https://doi.org/10.1101/gad.260703.115 CrossRefPubMedCentralPubMedGoogle Scholar
  94. van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791.  https://doi.org/10.1016/j.cell.2017.04.022 CrossRefPubMedGoogle Scholar
  95. Vancevska A, Douglass KM, Pfeiffer V, Manley S, Lingner J (2017) The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev 31:567–577.  https://doi.org/10.1101/gad.294082.116 CrossRefPubMedCentralPubMedGoogle Scholar
  96. Zafar F, Okita AK, Onaka AT, Su J, Katahira Y, Nakayama JI, Takahashi TS, Masukata H, Nakagawa T (2017) Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Res 45:11222–11235.  https://doi.org/10.1093/nar/gkx763 CrossRefPubMedCentralPubMedGoogle Scholar
  97. Zheng CL, Wang NJ, Chung J, Moslehi H, Sanborn JZ, Hur JS, Collisson EA, Vemula SS, Naujokas A, Chiotti KE, Cheng JB, Fassihi H, Blumberg AJ, Bailey CV, Fudem GM, Mihm FG, Cunningham BB, Neuhaus IM, Liao W, Oh DH, Cleaver JE, LeBoit PE, Costello JF, Lehmann AR, Gray JW, Spellman PT, Arron ST, Huh N, Purdom E, Cho RJ (2014) Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep 9:1228–1234.  https://doi.org/10.1016/j.celrep.2014.10.031 CrossRefPubMedCentralPubMedGoogle Scholar
  98. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8:870–876.  https://doi.org/10.1038/ncb1446 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Epigenetics and Cell Fate Centre, UMR7216 CNRSParis Diderot UniversityParisFrance

Personalised recommendations