, Volume 126, Issue 2, pp 213–222 | Cite as

Transcription-replication conflicts at chromosomal fragile sites—consequences in M phase and beyond

  • Vibe H. OestergaardEmail author
  • Michael LisbyEmail author


Collision between the molecular machineries responsible for transcription and replication is an important source of genome instability. Certain transcribed regions known as chromosomal fragile sites are particularly prone to recombine and mutate in a manner that correlates with specific transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription–replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how transcription–replication conflicts transition from S phase into various aberrant DNA structures in mitosis.


Chromosomal fragile sites Transcription Replication Template switching Mitosis Anaphase bridges 



This work was supported by The Danish Agency for Science, Technology and Innovation and the Villum Foundation. We thank Valeria Naim, Xin Shao, Vasileios Voutsinos, and Jakob Nilsson for comments on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human participant or animals performed by any of the authors.


  1. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124PubMedCrossRefGoogle Scholar
  2. Akamatsu Y, Kobayashi T (2015) The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol Cell Biol 35:1871–1881PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307:1235–1245PubMedCrossRefGoogle Scholar
  4. Azvolinsky A, Giresi PG, Lieb JD, Zakian VA (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell 34:722–734PubMedPubMedCentralCrossRefGoogle Scholar
  5. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801PubMedCrossRefGoogle Scholar
  6. Balakrishnan L, Bambara RA (2013a) Flap endonuclease 1. Annu Rev Biochem 82:119–138PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balakrishnan L, Bambara RA (2013b) Okazaki fragment metabolism. Cold Spring Harbor perspectives in biology 5Google Scholar
  8. Balk B, Maicher A, Dees M, Klermund J, Luke-Glaser S, Bender K, Luke B (2013) Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol 20:1199–1205PubMedCrossRefGoogle Scholar
  9. Barefield C, Karlseder J (2012) The BLM helicase contributes to telomere maintenance through processing of late-replicating intermediate structures. Nucleic Acids Res 40:7358–7367PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barlow JH, Faryabi RB, Callen E, Wong N, Malhowski A, Chen HT, Gutierrez-Cruz G, Sun HW, McKinnon P, Wright G et al (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–632PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baumann C, Korner R, Hofmann K, Nigg EA (2007) PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128:101–114PubMedCrossRefGoogle Scholar
  12. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature (London) 463:899–905CrossRefGoogle Scholar
  13. Bhatia V, Barroso SI, Garcia-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A (2014) BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature (London) 511:362–365CrossRefGoogle Scholar
  14. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C et al (2010) Signatures of mutation and selection in the cancer genome. Nature (London) 463:893–898CrossRefGoogle Scholar
  15. Blanco MG, Matos J, West SC (2014) Dual control of yen1 nuclease activity and cellular localization by cdk and cdc14 prevents genome instability. Mol Cell 54:94–106PubMedPubMedCentralCrossRefGoogle Scholar
  16. Blower MD (2016) Centromeric transcription regulates Aurora-B localization and activation. Cell RepGoogle Scholar
  17. Brewer BJ, Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643PubMedCrossRefGoogle Scholar
  18. Callegari AJ (2016) Does transcription-associated DNA damage limit lifespan? DNA Repair (Amst) 41:1–7CrossRefGoogle Scholar
  19. Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789PubMedCrossRefGoogle Scholar
  20. Castel SE, Ren J, Bhattacharjee S, Chang AY, Sanchez M, Valbuena A, Antequera F, Martienssen RA (2014) Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159:572–583PubMedPubMedCentralCrossRefGoogle Scholar
  21. Castellano-Pozo M, Santos-Pereira JM, Rondon AG, Barroso S, Andujar E, Perez-Alegre M, Garcia-Muse T, Aguilera A (2013) R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell 52:583–590PubMedCrossRefGoogle Scholar
  22. Chan KL, North PS, Hickson ID (2007) BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. Embo J 26:3397–3409PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chan KL, Palmai-Pallag T, Ying S, Hickson ID (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11:753–760PubMedCrossRefGoogle Scholar
  24. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KH, Wong LH (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109:1979–1984PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chavez S, Aguilera A (1997) The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev 11:3459–3470PubMedPubMedCentralCrossRefGoogle Scholar
  26. Clemente-Blanco A, Sen N, Mayan-Santos M, Sacristan MP, Graham B, Jarmuz A, Giess A, Webb E, Game L, Eick D et al (2011) Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat Cell Biol 13:1450–1456PubMedPubMedCentralCrossRefGoogle Scholar
  27. Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18:3059–3067PubMedPubMedCentralCrossRefGoogle Scholar
  28. Costantino L, Koshland D (2015) The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34:39–45PubMedPubMedCentralCrossRefGoogle Scholar
  29. Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, Haber JE, Iliakis G, Kallioniemi OP, Halazonetis TD (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91PubMedCrossRefGoogle Scholar
  30. Debatisse M, Le Tallec B, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28:22–32PubMedCrossRefGoogle Scholar
  31. Du Y, Topp CN, Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 6:e1000835PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dul JL, Drexler H (1988) Transcription stimulates recombination. II. generalized transduction of Escherichia coli by phages T1 and T4. Virology 162:471–477PubMedCrossRefGoogle Scholar
  33. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192PubMedCrossRefGoogle Scholar
  34. Fangman WL, Brewer BJ (1992) A question of time: replication origins of eukaryotic chromosomes. Cell 71:363–366PubMedCrossRefGoogle Scholar
  35. Ferri F, Bouzinba-Segard H, Velasco G, Hube F, Francastel C (2009) Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 37:5071–5080PubMedPubMedCentralCrossRefGoogle Scholar
  36. Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, Bersani F, Pineda JR, Suva ML, Benes CH et al (2015) Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347:273–277PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fuda NJ, Ardehali MB, Lis JT (2009) Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461:186–192PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gaillard H, Aguilera A (2016) Transcription as a threat to genome integrity. Annu Rev Biochem 85:291–317PubMedCrossRefGoogle Scholar
  40. Gaillard H, Herrera-Moyano E, Aguilera A (2013) Transcription-associated genome instability. Chem Rev 113:8638–8661PubMedCrossRefGoogle Scholar
  41. Gallina I, Christiansen SK, Pedersen RT, Lisby M, Oestergaard VH (2016) TopBP1-mediated DNA processing during mitosis. Cell Cycle 15:176–183PubMedCrossRefGoogle Scholar
  42. Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, Li X (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25:2041–2056PubMedPubMedCentralCrossRefGoogle Scholar
  43. Garcia-Rubio ML, Perez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E, Rosado IV, Aguilera A (2015) The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet 11:e1005674PubMedPubMedCentralCrossRefGoogle Scholar
  44. Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190:197–207PubMedPubMedCentralCrossRefGoogle Scholar
  45. Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142PubMedCrossRefGoogle Scholar
  46. Gomez-Gonzalez B, Felipe-Abrio I, Aguilera A (2009) The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol 29:5203–5213PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202PubMedCrossRefGoogle Scholar
  48. Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D (2015) Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Mol Cell 60:797–807PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair (Amst) 19:84–94CrossRefGoogle Scholar
  50. Harrigan JA, Belotserkovskaya R, Coates J, Dimitrova DS, Polo SE, Bradshaw CR, Fraser P, Jackson SP (2011) Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 193:97–108PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hecht F, Glover TW (1984) Cancer chromosome breakpoints and common fragile sites induced by aphidicolin. Cancer Genet Cytogenet 13:185–188PubMedCrossRefGoogle Scholar
  52. Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977PubMedCrossRefGoogle Scholar
  53. Hernandez P, Martin-Parras L, Martinez-Robles ML, Schvartzman JB (1993) Conserved features in the mode of replication of eukaryotic ribosomal RNA genes. EMBO J 12:1475–1485PubMedPubMedCentralGoogle Scholar
  54. Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721PubMedCrossRefGoogle Scholar
  55. Ivaldi MS, Karam CS, Corces VG (2007) Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev 21:2818–2831PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kantidakis T, Saponaro M, Mitter R, Horswell S, Kranz A, Boeing S, Aygun O, Kelly GP, Matthews N, Stewart A et al (2016) Mutation of cancer driver MLL2 results in transcription stress and genome instability. Genes Dev 30:408–420PubMedPubMedCentralCrossRefGoogle Scholar
  57. Keil RL, Roeder GS (1984) Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell 39:377–386PubMedCrossRefGoogle Scholar
  58. Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436–439PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kim N, Jinks-Robertson S (2012) Transcription as a source of genome instability. Nat Rev 13:204–214Google Scholar
  60. Kim JH, Zhang T, Wong NC, Davidson N, Maksimovic J, Oshlack A, Earnshaw WC, Kalitsis P, Hudson DF (2013) Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun 4:2537PubMedPubMedCentralGoogle Scholar
  61. Kranz AL, Jiao CY, Winterkorn LH, Albritton SE, Kramer M, Ercan S (2013) Genome-wide analysis of condensin binding in Caenorhabditis elegans. Genome Biol 14:R112PubMedPubMedCentralCrossRefGoogle Scholar
  62. Larochelle S, Amat R, Glover-Cutter K, Sanso M, Zhang C, Allen JJ, Shokat KM, Bentley DL, Fisher RP (2012) Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol 19:1108–1115PubMedPubMedCentralCrossRefGoogle Scholar
  63. Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4:420–428PubMedCrossRefGoogle Scholar
  64. Lee M, Lee CH, Demin AA, Munashingha PR, Amangyeld T, Kwon B, Formosa T, Seo YS (2014) Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J Biol Chem 289:15064–15079PubMedPubMedCentralCrossRefGoogle Scholar
  65. Leibowitz ML, Zhang CZ, Pellman D (2015) Chromothripsis: a new mechanism for rapid Karyotype evolution. Annu Rev Genet 49:183–211PubMedCrossRefGoogle Scholar
  66. Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature (London) 470:120–123CrossRefGoogle Scholar
  67. Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–378PubMedCrossRefGoogle Scholar
  68. Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC, Rickels RA, Gao X, Haug JS, Jaspersen SL, Shilatifard A (2015) Mitotic transcriptional activation: clearance of actively engaged Pol II via transcriptional elongation control in mitosis. Mol Cell 60:435–445PubMedCrossRefGoogle Scholar
  69. Liu H, Qu Q, Warrington R, Rice A, Cheng N, Yu H (2015) Mitotic transcription installs Sgo1 at centromeres to coordinate chromosome segregation. Mol Cell 59:426–436PubMedCrossRefGoogle Scholar
  70. Looke M, Reimand J, Sedman T, Sedman J, Jarvinen L, Varv S, Peil K, Kristjuhan K, Vilo J, Kristjuhan A (2010) Relicensing of transcriptionally inactivated replication origins in budding yeast. J Biol Chem 285:40004–40011PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lukas C, Savic V, Bekker-Jensen S, Doil C, Neumann B, Pedersen RS, Grofte M, Chan KL, Hickson ID, Bartek J et al (2011) 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol 13:243–253PubMedCrossRefGoogle Scholar
  72. Luke B, Panza A, Redon S, Iglesias N, Li Z, Lingner J (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32:465–477PubMedCrossRefGoogle Scholar
  73. Martinez-Balbas MA, Dey A, Rabindran SK, Ozato K, Wu C (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38PubMedCrossRefGoogle Scholar
  74. Matos J, West SC (2014) Holliday junction resolution: regulation in space and time. DNA Repair (Amst) 19:176–181CrossRefGoogle Scholar
  75. Matos J, Blanco MG, Maslen S, Skehel JM, West SC (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147:158–172PubMedPubMedCentralCrossRefGoogle Scholar
  76. Matos J, Blanco MG, West SC (2013) Cell-cycle kinases coordinate the resolution of recombination intermediates with chromosome segregation. Cell Rep 4:76–86PubMedCrossRefGoogle Scholar
  77. Minocherhomji S, Ying S, Bjerregaard VA, Bursomanno S, Aleliunaite A, Wu W, Mankouri HW, Shen H, Liu Y, Hickson ID (2015) Replication stress activates DNA repair synthesis in mitosis. Nature 528:286–290PubMedCrossRefGoogle Scholar
  78. Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41:21–32PubMedPubMedCentralCrossRefGoogle Scholar
  79. Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL, Boothman DA (2016) XRN2 links transcription termination to DNA damage and replication stress. PLoS Genet 12:e1006107PubMedPubMedCentralCrossRefGoogle Scholar
  80. Naim V, Rosselli F (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11:761–768PubMedCrossRefGoogle Scholar
  81. Naim V, Wilhelm T, Debatisse M, Rosselli F (2013) ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 15:1008–1015PubMedCrossRefGoogle Scholar
  82. Nickoloff JA (1992) Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol 12:5311–5318PubMedPubMedCentralCrossRefGoogle Scholar
  83. Orthwein A, Fradet-Turcotte A, Noordermeer SM, Canny MD, Brun CM, Strecker J, Escribano-Diaz C, Durocher D (2014) Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344:189–193PubMedCrossRefGoogle Scholar
  84. Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–691PubMedPubMedCentralCrossRefGoogle Scholar
  85. Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature (London) 497:458–462CrossRefGoogle Scholar
  86. Pedersen RT, Kruse T, Nilsson J, Oestergaard VH, Lisby M (2015) TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. J Cell Biol 210:565–582PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pfeiffer V, Crittin J, Grolimund L, Lingner J (2013) The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J 32:2861–2871PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pike JE, Burgers PM, Campbell JL, Bambara RA (2009) Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem 284:25170–25180PubMedPubMedCentralCrossRefGoogle Scholar
  89. Prado F, Aguilera A (2005) Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 24:1267–1276PubMedPubMedCentralCrossRefGoogle Scholar
  90. Prado F, Piruat JI, Aguilera A (1997) Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J 16:2826–2835PubMedPubMedCentralCrossRefGoogle Scholar
  91. Quenet D, Dalal Y (2014) A long non-coding RNA is required for targeting centromeric protein A to the human centromere. Elife 3:e03254PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA (2010) c-Myc regulates transcriptional pause release. Cell 141:432–445PubMedPubMedCentralCrossRefGoogle Scholar
  93. Rosic S, Kohler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rothstein R, Michel B, Gangloff S (2000) Replication fork pausing and recombination or “gimme a break”. Genes Dev 14:1–10PubMedGoogle Scholar
  95. Ryu GH, Tanaka H, Kim DH, Kim JH, Bae SH, Kwon YN, Rhee JS, MacNeill SA, Seo YS (2004) Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast. Nucleic Acids Res 32:4205–4216PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sabouri N, McDonald KR, Webb CJ, Cristea IM, Zakian VA (2012) DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase. Genes Dev 26:581–593PubMedPubMedCentralCrossRefGoogle Scholar
  97. Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D, Lopez BS (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. Embo J 20:3861–3870PubMedPubMedCentralCrossRefGoogle Scholar
  98. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev 16:583–597CrossRefGoogle Scholar
  99. Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, Williams H, Soding J, Stewart A, Svejstrup JQ (2014) RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157:1037–1049PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sarbajna S, Davies D, West SC (2014) Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev 28:1124–1136PubMedPubMedCentralCrossRefGoogle Scholar
  101. Schiavone D, Jozwiakowski SK, Romanello M, Guilbaud G, Guilliam TA, Bailey LJ, Sale JE, Doherty AJ (2016) PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol Cell 61:161–169PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236PubMedCrossRefGoogle Scholar
  103. Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang CC, Cohn MA, Gibbons RJ, Deans AJ, Niedzwiedz W (2015) The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol Cell 60:351–361PubMedPubMedCentralCrossRefGoogle Scholar
  104. Simi S, Simili M, Bonatti S, Campagna M, Abbondandolo A (1998) Fragile sites at the centromere of Chinese hamster chromosomes: a possible mechanism of chromosome loss. Mutat Res 397:239–246PubMedCrossRefGoogle Scholar
  105. Singh J, Padgett RA (2009) Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 16:1128–1133PubMedPubMedCentralCrossRefGoogle Scholar
  106. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28:1384–1396PubMedPubMedCentralCrossRefGoogle Scholar
  107. Smith DI, Zhu Y, McAvoy S, Kuhn R (2006) Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 232:48–57PubMedCrossRefGoogle Scholar
  108. Snyder M, Sapolsky RJ, Davis RW (1988) Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol Cell Biol 8:2184–2194PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sollier J, Stork CT, Garcia-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785PubMedPubMedCentralCrossRefGoogle Scholar
  110. Stuckey R, Garcia-Rodriguez N, Aguilera A, Wellinger RE (2015) Role for RNA:DNA hybrids in origin-independent replication priming in a eukaryotic system. Proc Natl Acad Sci U S A 112:5779–5784PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sutani T, Sakata T, Nakato R, Masuda K, Ishibashi M, Yamashita D, Suzuki Y, Hirano T, Bando M, Shirahige K (2015) Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun 6:7815PubMedPubMedCentralCrossRefGoogle Scholar
  112. Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506PubMedPubMedCentralCrossRefGoogle Scholar
  113. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630PubMedCrossRefGoogle Scholar
  114. Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991PubMedPubMedCentralCrossRefGoogle Scholar
  115. Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A, Machin F, Pasero P, Lisby M, Haber JE, Aragon L (2007) Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315:1411–1415PubMedCrossRefGoogle Scholar
  116. Van Hooser A, Goodrich DW, Allis CD, Brinkley BR, Mancini MA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111(Pt 23):3497–3506PubMedGoogle Scholar
  117. Vilette D, Uzest M, Ehrlich SD, Michel B (1992) DNA transcription and repressor binding affect deletion formation in Escherichia coli plasmids. EMBO J 11:3629–3634PubMedPubMedCentralGoogle Scholar
  118. Vinciguerra P, Godinho SA, Parmar K, Pellman D, D’Andrea AD (2010) Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. J Clin Invest 120:3834–3842PubMedPubMedCentralCrossRefGoogle Scholar
  119. Voelkel-Meiman K, Keil RL, Roeder GS (1987) Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48:1071–1079PubMedCrossRefGoogle Scholar
  120. Wahba L, Gore SK, Koshland D (2013) The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. eLife 2:e00505PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW, Schwer B (2016) Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164:644–655PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, Mayle R, Chen X, Malkova A, Sung P et al (2013) Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration. Nature (London) 502:393–396CrossRefGoogle Scholar
  123. Wilson TE, Arlt MF, Park SH, Rajendran S, Paulsen M, Ljungman M, Glover TW (2015) Large transcription units unify copy number variants and common fragile sites arising under replication stress. Genome Res 25:189–200PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E et al (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wyatt HD, West SC (2014) Holliday junction resolvases. Cold Spring Harb Perspect Biol 6:a023192PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wyatt HD, Sarbajna S, Matos J, West SC (2013) Coordinated actions of SLX1-SLX4 and MUS81-EME1 for Holliday junction resolution in human cells. Mol Cell 52:234–247PubMedCrossRefGoogle Scholar
  127. Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, Mankouri HW, Liu Y, Hickson ID (2013) MUS81 promotes common fragile site expression. Nat Cell Biol 15:1001–1007PubMedCrossRefGoogle Scholar
  128. Yuce O, West SC (2013) Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol Cell Biol 33:406–417PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yunis JJ, Soreng AL (1984) Constitutive fragile sites and cancer. Science 226:1199–1204PubMedCrossRefGoogle Scholar
  130. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, Meyerson M, Pellman D (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations