Relationship between dose and stopping power values for electrons in skin and muscle tissues

Abstract

Absorbed dose and stopping power of the target material are two important parameters for determining the radiation effects. In this work, the relationship between these two parameters has been investigated for electron beams incident on skin and muscle tissue. Absorbed dose was obtained by using the EGSnrc code and the stopping power values were calculated by considering the velocity-depended effective charge and mean excitation values. To obtain the relationship between absorbed dose and stopping power values, these parameters were graphed together and simple fitting functions have been obtained. The results obtained show that these parameters are linearly correlated with each other.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akar A, Gümüş H (2005) Electron stopping power in biological compounds for low and intermediate energies with the generalized oscillator strength (GOS) model. Radiat Phys Chem 73(4):196–203

    ADS  Google Scholar 

  2. Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36(7):861

    Google Scholar 

  3. Attix FH (1986) Introduction to radiological physics and radiation dosimetry. John Wiley & Sons, New York

    Google Scholar 

  4. Bethe H (1930) Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann Phys 397(3):325–400

    MATH  Google Scholar 

  5. Björk P, Knöös T, Nilsson P (2002) Influence of initial electron beam characteristics on Monte Carlo calculated absorbed dose distributions for linear accelerator electron beams. Phys Med Biol 47(22):4019

    Google Scholar 

  6. Bloch F (1933) Zur bremsung rasch bewegter teilchen beim durchgang durch materie. Ann Phys 408(3):285–320

    MATH  Google Scholar 

  7. Bohr N (1913) II. On the theory of the decrease of velocity of moving electrified particles on passing through matter. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25(145):10–31

    MATH  Google Scholar 

  8. Bunge CF, Barrientos JA, Bunge AV (1993) Roothaan-Hartree-Fock ground-state atomic wave functions: Slater-type orbital expansions and expectation values for Z= 2–54. At Data Nucl Data Tables 53(1):113–162

    ADS  Google Scholar 

  9. Burlin T, Sidwell J, Wheatley B (1973) Applications of Monte Carlo methods in medical radiology. Br J Radiol 46(545):398–399

    Google Scholar 

  10. Clementi E, Roetti C (1974) Roothaan-Hartree-Fock atomic wavefunctions: basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤ 54. At Data Nucl Data Tables 14(3–4):177–478

    ADS  Google Scholar 

  11. Correa AA (2018) Calculating electronic stopping power in materials from first principles. Comput Mater Sci 150:291–303

    Google Scholar 

  12. Cygler J, Li XA, Ding GX, Lawrence E (1997) Practical approach to electron beam dosimetry at extended SSD. Phys Med Biol 42(8):1505

    Google Scholar 

  13. Das IJ, McGee KP, Cheng CW (1995) Electron-beam characteristics at extended treatment distances. Med Phys 22(10):1667–1674

    Google Scholar 

  14. Firsov O (1959) A qualitative interpretation of the mean electron excitation energy in atomic collisions. Zhur Eksptl' i Teoret Fiz 9:1076

    Google Scholar 

  15. Ford R, Nelson W (1978) The EGS code system—version 3 Report SLAC-210. Stanford Linear Accelerator Center, Stanford

    Google Scholar 

  16. Gümüş H, Kabadayı Ö, Tufan MÇ (2006) Calculation of the stopping power for intermediate energy positrons. Chin J Phys 44(4):290–296

    Google Scholar 

  17. Hogstrom KR, Almond PR (2006) Review of electron beam therapy physics. Phys Med Biol 51(13):R455

    ADS  Google Scholar 

  18. ICRU I (1989) Tissue substitutes in radiation dosimetry and measurement. International Commission on Radiation Units and Measurements

  19. Kapur A, Ma C-M (1999) Stopping-power ratios for clinical electron beams from a scatter-foil linear accelerator. Phys Med Biol 44(9):2321

    Google Scholar 

  20. Katagiri M, Hikoji M, Kitaichi M, Sawamura S, Aoki Y (2000) Effective doses and organ doses per unit fluence calculated for monoenergetic 0.1 MeV to 100 MeV electrons by the MIRD-5 phantom. Radiat Prot Dosimetry 90(4):393–401

    Google Scholar 

  21. Khan FM, Gibbons JP (2014) Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  22. Kirkwood B, Sterne J (2003) Bootstrapping. medical statistics. Blackwell Science, Oxford

    Google Scholar 

  23. Licona I, Figueroa-Medina E, Gamboa-deBuen I (2017) Dose distributions and percentage depth dose measurements for a total skin electron therapy. Radiat Meas 106:365–372

    Google Scholar 

  24. Lindhard J, Scharff M (1961) Energy dissipation by ions in the keV region. Phys Rev 124(1):128

    ADS  Google Scholar 

  25. Love P, Lewis D, Al-Affan I, Smith C (1998) Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses. Phys Med Biol 43(5):1351

    Google Scholar 

  26. Ma C-M, Jiang SB (1999) Monte Carlo modelling of electron beams from medical accelerators. Phys Med Biol 44(12):R157

    Google Scholar 

  27. Mihailescu D, Borcia C (2018) electron dose distributions in inhomogeneous phantoms: a Monte Carlo Study. Rom Rep Phys 70:603

    Google Scholar 

  28. Mohan R, Chui C, Lidofsky L (1985) Energy and angular distributions of photons from medical linear accelerators. Med Phys 12(5):592–597

    Google Scholar 

  29. Podgorsak EB (2005) Radiation oncology physics. International Atomic Energy Agency, Vienna, pp 123–271

    Google Scholar 

  30. Rogers D (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51(13):R287

    ADS  Google Scholar 

  31. Rogers D, Kawrakow I, Seuntjens J, Walters B, Mainegra-Hing E (2003) NRC user codes for EGSnrc. NRCC Report PIRS-702 (Rev. B)

  32. Rohrlich F, Carlson B (1954) Positron-electron differences in energy loss and multiple scattering. Phys Rev 93(1):38

    ADS  MATH  Google Scholar 

  33. Saadi MK, Machrafi R (2020) Development of a new code for stopping power and CSDA range calculation of incident charged particles, part A: electron and positron. Appl Radiat Isot 161:109145

    Google Scholar 

  34. Sánchez-Doblado F, Andreo P, Capote R, Leal A, Perucha M, Arráns R, Carrasco E (2003) Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams. Phys Med Biol 48(14):2081

    Google Scholar 

  35. Saw CB, Pawlicki T, Korb LJ, Wu A (1994) Effects of extended SSD on electron-beam depth-dose curves. Med Dosim 19(2):77–81

    Google Scholar 

  36. Şengül K, Çetintaş SK, Gözcü S, Şahin S, Meral K, Demiröz C, Özkan L (2011) Elektron Işınlarının Farklı Kaynak-Yüzey Mesafelerinde Dozimetrik Olarak İncelenmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi 37(1):17–20

    Google Scholar 

  37. Sugiyama H (1985) Stopping power formula for intermediate energy electrons. Phys Med Biol 30(4):331

    Google Scholar 

  38. Trujillo-López L, Cabrera-Trujillo R (2019) Electronic stopping cross section for protons incident on biological and biomedical materials within a FSGO quantum chemistry description. Radiat Phys Chem 156:150–158

    ADS  Google Scholar 

  39. Tufan MÇ, Namdar T, Gümüş H (2013) Stopping power and CSDA range calculations for incident electrons and positrons in breast and brain tissues. Radiat Environ Biophys 52(2):245–253

    Google Scholar 

  40. Usta M, Aydın G (2020) Use of Gaussian-type functions for flux-based dose calculations in carbon ion therapy. Radiat Environ Biophys 59(3):511–522

    Google Scholar 

  41. Usta M, Tufan MÇ (2017) Stopping power and range calculations in human tissues by using the Hartree-Fock-Roothaan wave functions. Radiat Phys Chem 140:43–50

    ADS  Google Scholar 

  42. Vandana S, Benny P, Selvam TP (2018) Comparison of measured and Monte Carlo-calculated electron depth dose distributions in aluminium. NISCAIR-CSIR, India

    Google Scholar 

  43. Weber WJ, Zhang Y (2019) Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: challenges and recommendations. Curr Opin Solid State Mater Sci 23(4):100757

    ADS  Google Scholar 

  44. Yani S, Lestari FP, Haryanto F (2018) Could water replace muscle tissue used in electron and photon beams? A Monte Carlo Study. Paper presented at the 2018 2nd International Conference on Biomedical Engineering (IBIOMED). IEEE. https://doi.org/10.1109/IBIOMED.2018.8534894

    Article  Google Scholar 

  45. Yüksel Z, Tufan MÇ (2018a) Estimating the effect of electron beam interactions with biological tissues. Can J Phys 96(12):1338–1348

    ADS  Google Scholar 

  46. Yüksel Z, Tufan MÇ (2018b) Estimating the effect of electron beams ınteractions with the biological tissues. Can J Phys. https://doi.org/10.1139/cjp-2018-0093

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zeynep Yüksel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yüksel, Z., Tufan, M.Ç. Relationship between dose and stopping power values for electrons in skin and muscle tissues. Radiat Environ Biophys 60, 135–140 (2021). https://doi.org/10.1007/s00411-020-00888-1

Download citation

Keywords

  • Absorbed dose
  • Stopping power
  • Electron
  • CSDA range
  • EGSnrc