Skip to main content
Log in

Dose limits for occupational exposure to ionising radiation and genotoxic carcinogens: a German perspective

  • Review
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

This paper summarises the view of the German Commission on Radiological Protection (“Strahlenschutzkommission”, SSK) on the rationale behind the currently valid dose limits and dose constraints for workers recommended by the International Commission on Radiological Protection (ICRP). The paper includes a discussion of the reasoning behind current dose limits followed by a discussion of the detriment used by ICRP as a measure for stochastic health effects. Studies on radiation-induced cancer are reviewed because this endpoint represents the most important contribution to detriment. Recent findings on radiation-induced circulatory disease that are currently not included in detriment calculation are also reviewed. It appeared that for detriment calculations the contribution of circulatory diseases plays only a secondary role, although the uncertainties involved in their risk estimates are considerable. These discussions are complemented by a review of the procedures currently in use in Germany, or in discussion elsewhere, to define limits for genotoxic carcinogens. To put these concepts in perspective, actual occupational radiation exposures are exemplified with data from Germany, for the year 2012, and regulations in Germany are compared to the recommendations issued by ICRP. Conclusions include, among others, considerations on radiation protection concepts currently in use and recommendations of the SSK on the limitation of annual effective dose and effective dose cumulated over a whole working life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Figure adapted from SSK 2018. For details see text

Fig. 3

Similar content being viewed by others

Notes

  1. UNSCEAR uses the term “solid tumours”or (meanwhile predominantly) “solid cancers” instead of “malignant tumours”.

  2. One röntgen in tissue corresponds roughly to a dose of 10 mGy or (for low-LET radiation) 10 mSv.

  3. Because for genotoxic substances risk is defined as life-long probability of cancer incidence, the detriment-adjusted nominal risk given by ICRP for workers (i.e., 4.2% per Sv), which is dominated by cancer mortality (see lethality factor kT in Eq. 1), was multiplied roughly by a factor of 2, to estimate corresponding incidence risk at 400 mSv.

References

  • Azizova TV, Muirhead CR, Druzhinina MB, Grigoryeva ES, Vlasenko EV, Sumina MV, O’Hagan JA, Zhang W, Haylock RG, Hunter N (2010) Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958. Radiat Res 174(2):155–168

    ADS  Google Scholar 

  • Azizova TV, Muirhead CR, Mooseva MB, Grigoryeva ES, Sumina MV, O’Hagan JA, Zhang W, Haylock RJ, Hunter N (2011) Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948–1972. Radiat Environ Biophys 50(4):539–552

    Google Scholar 

  • BEIR (2006) National Research Council. Health risks from exposure to low levels of ionising radiation: BEIR VII Phase 2. United States National Academy of Sciences. The National Academy Press, Washington (ISBN 978-0-309-09156-5)

    Google Scholar 

  • BMU (2014) Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMU). Umweltradioaktivität und Strahlenbelastung. Jahresbericht 2012. Erscheinungsdatum: 26. August 2014: urn:nbn:de:0221-2014082611633 (in German)

  • Breckow J, Emami S, Amalhaf S, Beshgard A, Buermeyer J, Spruck K (2018) Impact of updating the non-radiation parameters in the ICRP 103 detriment model. Radiat Environ Biophys 57:89–98

    Google Scholar 

  • British Royal Society (1983) Risk Assessment: report of a Royal Society Study Group. Royal Society Study Group, London (ISBN 0854032088)

    Google Scholar 

  • Bundesamt für Strahlenschutz (2014) Hrsg. Autoren: Frasch G, Kammerer L, Karofsky R, Mordek E, Schlosser A, Spiesl J. Die berufliche Strahlenexposition in Deutschland 2012: Bericht des Strahlenschutzregisters. Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit. BfS-SG-22/14. urn:nbn:de:0221-2014032711370 (in German)

  • Bundesamt für Strahlenschutz (2015) Hrsg. Autoren: Frasch G, Kammerer L, Karofsky R, Mordek E, Schlosser A, Spiesl J. Die berufliche Strahlenexposition in Deutschland 2013-2014: Bericht des Strahlenschutzregisters. Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit. BfS-SG-23/15. urn:nbn:de:0221-2015100213555 (in German)

  • Bundesamt für Strahlenschutz (2016) Daten zur Berufslebensdosis. Bericht an das Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) vom 4. April 2016 (in German)

  • Busch U (2013) Historische Aspekte der Entwicklung von Grenzwerten im Strahlenschutz. Z Med Phys 23(4):255–258

    Google Scholar 

  • Cleaver JE (1967) The relationship between the rate of DNA synthesis and its inhibition by ultraviolet light in mammalian cells. Rad Res 30:795–810

    Google Scholar 

  • Davis FG, Boice JD Jr, Hrubec Z, Monson RR (1989) Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 49(21):6130–6136

    Google Scholar 

  • Davis FG, Yu Krestinina L, Preston D, Epifanova S, Degteva M, Akleyev AV (2015) Solid cancer incidence in the Techa river incidence cohort: 1956–2007. Radiat Res 184(1):56–65

    ADS  Google Scholar 

  • Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J (2017) Residential exposure to natural background radiation and risk of childhood acute leukemia in France, 1990–2009. Environ Health Perspect 125(4):714–720

    Google Scholar 

  • EURATOM (1996) The Council of the European Union, Council Directive of 13 May 1996 Laying down basic safety standards for the protection of the health of workers and the general public against the danger arising from ionising radiation, Council Directive 96/29/Euratom. Off J Eur Commun L 349:21–25

    Google Scholar 

  • EURATOM (2014) European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off J EU L13(57):1–73

    Google Scholar 

  • GefStoffV (2010) Verordnung zum Schutz vor Gefahrstoffen (Gefahrstoffverordnung—GefStoffV) vom 26 November 2010 (BGBl. I S. 1643, 1644), die zuletzt durch Artikel 148 des Gesetzes vom 29 März 2017 geändert worden ist. BGBl. I S. 626. https://www.baua.de/EN/Topics/Work-design/Hazardous-substances/Working-with-hazardous-substances/pdf/Hazardous-Substances-Ordinance.pdf?__blob=publicationFile&v=2

  • Grant EJ, Brenner A, Sugiyama H, Sakata R, Sadakane A, Utada M, Cahoon EK, Milder CM, Soda M, Cullings HM, Preston DL, Mabuchi K, Ozasa K (2017) Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res 187(5):513–537

    ADS  Google Scholar 

  • Grosche B, Lackland DT, Land CE, Simon SL, KN Apsaliko, Pivina LM, Bauer S, Gusev BL (2011) Mortality from cardiovascular diseases in the Semipalatinsk historical cohort, 1960–1999, and its relationship to radiation exposure. Radiat Res 176(5):660–669

    ADS  Google Scholar 

  • Health Council of the Netherlands (2019) Diesel engine exhause; health-based recommended occupational exposure limit. No. 2019/02, The Hague, March 13, 2019

  • Howard-Flanders P, Boyce RP, Theriot L (1966) Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 53(6):1119–1136

    Google Scholar 

  • Hunter N, Kuznetsova IS, Labutina EV, Harrison JD (2013) Solid cancer incidence other than lung, liver and bone in Mayak workers: 1948–2004. Br J Cancer 109(7):1989–1996

    Google Scholar 

  • IAEA (2014) Radiation protection and safety of radiation sources: International Basic Safety Standards. General Safety Requirements (GSR). Part 3. International Atomic Energy Agency, Wien (ISBN 978-92-0-135310-8)

    Google Scholar 

  • ICRP (1951) International recommendations on radiological protection. Revised by the International Commission on Radiological Protection at the sixth International Congress of Radiology, London, 1950. Br J Radiol 24:46–53

    Google Scholar 

  • ICRP (1955) Recommendations of the International Commission on Radiological Protection. British Journal of Radiology, Supplement no. 6, London, UK

  • ICRP (2019) The use of dose quantities in radiological protection, in press

  • ICRP Publication 26 (1977a) Recommendations of the International Commission on Radiological Protection. Ann. ICRP 1 (3), Pergamon Press

  • ICRP Publication 27 (1977b) Problems involved in developing an index of harm. Ann. ICRP 1(4), Pergamon Press

  • ICRP Publication 45 (1985) Quantitative bases for developing a unified index of harm. Ann. ICRP 15(3), Pergamon Press

  • ICRP Publication 60 (1991) 1990 Recommendations of the International Commission on Radiological Protection (ICRP). Ann. ICRP 21(1–3), Pergamon Press, 1991, ISBN 0080411444

  • ICRP Publication 103 (2007) The 2007 Recommendations of the International Commission on Radiological Protection (ICRP). Ann. ICRP 37(2-4), Elsevier, 2007, ISBN 978-0702030482

  • ICRP Publication 118 (2012) ICRP statement on tissue reactions/early and late effects of radiation in normal tissues and organs—Threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 41(1/2), Elsevier, 2012, ISBN 978-0702052279

  • Ivanov VK, Maksioutov MA, Chekin SY, Petrov AV, Biryukov AP, Kruglova ZG, Matyash VA, Tsyb AF, Manton KG, Kravchenko JS (2006) The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys 90(3):199–207

    Google Scholar 

  • IXRPC (1934) International recommendations for X-ray and radium protection. Revised by the International X-ray and Radium Protection Commission at the fourth International Congress of Radiology, Zurich, Br. J. Radiol. VII, 83

  • Jacobi W (1975) The concept of the effective dose: a proposal for the combination of organ doses. Radiat Environ Biophys 12(2):101–109

    Google Scholar 

  • Kaul A, Kossel F, Martignoni K, Nitschke J (1989) Limitation of occupational radiation risk by radiation protection legislation in the Federal Republic of Germany. J Radiol Prot 9:85–92

    Google Scholar 

  • Kendall GM, Little MP, Wakeford R, Bunch KJ, Miles JC, Vincent TJ, Meara JR, Murphy MF (2013) A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006. Leukemia 27(1):3–9

    Google Scholar 

  • Kocher DC, Apostoaei AI, Hoffman FO, Trabalka JR (2018) Probability distribution of dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low-LET radiation. Health Phys 114:602–622

    Google Scholar 

  • Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A (2013) Chronic low-dose exposure in the Techa River cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys 52(1):47–57

    Google Scholar 

  • Kreuzer M, Dufey F, Sogel M, Schnelzer M, Walsh L (2013) External gamma radiation and mortality from cardiovascular diseases in the German WISMUT uranium miners cohort study, 1946–2008. Radiat Environ Biophys 52(1):37–46

    Google Scholar 

  • Kreuzer M, Dufey F, Laurier D, Nowak D, Marsh JW, Schnelzer M, Sogl M, Walsh L (2015) Mortality from internal and external radiation exposure in a cohort of 1552 male German uranium millers, 1946–2008. Int Arch Occup Environ Health 88:431

    Google Scholar 

  • Kreuzer M, Sobotzki C, Fenske N, Marsh JW, Schnelzer M (2017) Leukaemia mortality and low-dose ionising radiation in the WISMUT uranium miner cohort (1946–2013). Occup Environ Med 74(4):252–258

    Google Scholar 

  • Lane RSD, Frost SE, Howe GR, Zablotska LB (2010) Mortality (1950–1999) and cancer incidence (1969–1999) in the cohort of Eldorado uranium workers. Radiat Res 174(6):773–785

    ADS  Google Scholar 

  • Laurent O, Metz-Flamant C, Rogel A, Hubert D, Riedel A, Garcier Y, Laurier D (2010) Relationship between occupational exposure to ionising radiation and mortality at the French electricity company, period 1961‒2003. Int Arch Occup Environ Health 83(8):935–944

    Google Scholar 

  • Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, Hamra GB, Haylock R, Laurier D, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A (2015) Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2:e276–e281

    Google Scholar 

  • Lindell B (1996) The history of radiation protection. Radiat Prot Dosim 68:83–95

    Google Scholar 

  • Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P (2010) Review and meta-analysis of epidemiological associations between low/moderate doses of ionising radiation and circulatory disease risks, and their possible mechanisms. Radiat Environ Biophys 49(2):139–153

    Google Scholar 

  • Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, Chumak VV, Cucinotta FA, de Vathaire F, Hall P, Harrison JD, Hildebrandt G, Ivanov V, Kashcheev VV, Klymenko SV, Kreuzer M, Laurent O, Ozasa K, Schneider T, Tapio S, Taylor AM, Tzoulaki I, Vandoolaeghe WL, Wakeford R, Zablotska LB, Zhang W, Lipshultz SE (2012) Systematic review and meta-analysis of circulatory disease from exposure to low-level ionising radiation and estimates of potential population mortality risks. Environ Health Persp 120(11):1503–1511

    Google Scholar 

  • Lochard J (2003) Occupational radiation protection: protecting workers against exposure to ionising radiation. Proceedings of an International Conference, Geneva, 26–30 August, 2002, 144–152. International Atomic Energy Agency (IAEA), Vienna, Austria, ISBN 92-0-105603-6

  • Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstaffe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360

    Google Scholar 

  • McGeoghegan D, Binks K, Gillies M, Jones S, Whaley S (2008) The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946‒2005. Int J Epidemiol 37(3):506–518

    Google Scholar 

  • Meinhold CB (1996) One hundred years of X-rays and radioactivity—radiation protection: then and now. Proceedings of the IRPA9 International Congress on Radiation Protection. International Radiation Protection Association, Washington, DC, US

  • Metz-Flamant C, Laurent O, Samson E, Caër-Lorho S, Acker A, Hubert D, Richardson DB, Laurier D (2013) Mortality associated with chronic external radiation exposure in the french combined cohort of nuclear workers. Occup Environ Med 70(9):630–638

    Google Scholar 

  • Mould RE (1993) A century of X-rays and radioactivity in medicine: with emphasis on photographic records of the early years. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Muirhead CR, O’Hagan JA, Haylock RGE, Phillipson MA, Willcock T, Berridge GLC, Zhang W (2009) Mortality and cancer incidence following occupational radiation exposure: third analysis of the National Registry for Radiation Workers. Br J Cancer 100(1):206–212

    Google Scholar 

  • Nair RRK, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Nakamura S, Sugahara T (2009) Background radiation and cancer incidence in Kerala, India—Karunagaplpally cohort study. Health Phys 96:55–66

    Google Scholar 

  • Nikkilä A, Erme S, Arvela H, Holmgren O, Raitanen J, Lohi O, Auvinen A (2016) Background radiation and childhood leukemia: a nationwide register-based case-control study. Int J Cancer 139(9):1975–1982

    Google Scholar 

  • Ozasa K, Shimizu Y, Suyama A, Kasagi F, Soda M, Grant EJ, Sakata R, Sugiyama H, Kodama K (2012) Studies of the mortality of atomic bomb survivors, Report 14, 1950–2003: an overview of cancer and noncancer diseases. Radiat Res 177(3):229–243

    ADS  Google Scholar 

  • Painter RB (1974) DNA damage and repair in eukaryotic cells. Genetics 78:139–148

    Google Scholar 

  • Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    Google Scholar 

  • Rage E, Caer-Lorho S, Drubay D, Ancelet S, Laroche P, Laurier D (2015) Mortality analyses in the updated French cohort of uranium miners (1946–2007). Int Arch Occup Environ Health 88(6):717–730

    Google Scholar 

  • Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, Hamra GB, Haylock R, Laurier D, Leuraud K, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A (2015) Risk of cancer from occupational exposure to ionising radiation: retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). BMJ 351:h5359

    Google Scholar 

  • Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N (2015) Dose and dose-rate effects of ionising radiation: a discussion in the light of radiological protection. Radiat Environ Biophys 54:379–401

    Google Scholar 

  • Rühm W, Azizova TV, Bouffler SD, Little MP, Shore RE, Walsh L, Woloschak GE (2016) Dose-rate effects in radiation biology and radiation protection. Ann ICRP 45(1S):262–279

    Google Scholar 

  • Rühm W, Eidemüller M, Kaiser JC (2017) Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data. Int J Radiat Biol 93:1093–1117

    Google Scholar 

  • Rühm W, Azizova T, Bouffler S, Cullings H, Grosche B, Little MP, Shore R, Walsh L, Woloschak G (2018a) Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates. J Radiat Res 59(2):1–10

    Google Scholar 

  • Rühm W, Friedl AA, Wojcik A (2018b) Coordinated radiation protection research in Europe: is it the beginning of a new era? Radiat Environ Biophys 57(1):1–4

    Google Scholar 

  • Schöllnberger H, Kaiser JC, Jacob P, Walsh L (2012) Dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors. Radiat Environ Biophys 51(2):165–178

    Google Scholar 

  • Schonfeld SJ, Krestinina LY, Epifanova S, Degteva MO, Akleyev AV, Preston DL (2013) Solid cancer mortality in the Techa River cohort (1950–2007). Radiat Res 179(2):183–189

    ADS  Google Scholar 

  • Setlow RB, Carrier WL, Williams RW (1966) Three levels of DNA repair in E. coli. Science 152(3722):676

    Google Scholar 

  • Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Shore RE (2010) Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950‒2003. BMJ 340:b5349

    Google Scholar 

  • Shore R, Walsh L, Azizova T, Rühm W (2017) Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor. Int J Radiat Biol 93:1064–1078.

    Google Scholar 

  • Simonetto C, Azizova TV, Grigoryeva ES, Kaiser JC, Schöllnberger H, Eidemüller M (2014) Ischemic heart disease in workers at Mayak PA: latency if incidence risk after radiation exposure. PLoS One 9(5):e96309

    ADS  Google Scholar 

  • Simonetto C, Schöllnberger H, Azizova TV, Grigoryeva ES, Pikulina MV, Eidemüller M (2015) Cerebrovascular diseases in workers at Mayak PA: the difference in radiation risk between incidence and mortality. PLoS One 10(5):e0125904

    Google Scholar 

  • Sokolnikov M, Preston D, Gilbert E, Schonfeld S, Koshurnikova N (2015) Radiation effects on mortality from solid cancers other than lung, liver, and bone cancer in the Mayak Worker Cohort: 1948–2008. PLoS One 10(2):e0117784

    Google Scholar 

  • Sokolnikov M, Preston D, Stram DO (2017) Mortality from solid cancers other than lung, liver, and bone in relation to external dose among plutonium and non-plutonium workers in the Mayak Worker Cohort. Radiat Environ Biophys 56(1):121–125

    Google Scholar 

  • Spycher BD, Lupatsch LE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, Swiss Pediatric Oncology Group, Swiss National Cohort Study Group (2015) Background ionising radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123(6):622–628

    Google Scholar 

  • SSK (2012) Cardiovascular diseases following admissible levels of occupational radiation exposure. Statement and scientific background by the Commission on Radiological Protection (SSK). urn:nbn:de:101:1-20160523770

  • SSK (2014) Dose and dose-rate effectiveness factor (DDREF). Recommendation by German Commission on Radiological Protection (SSK) with scientific grounds. urn:nbn:de:101:1-201604254267

  • SSK (2018) Basic principles of determining dose limits for occupationally exposed persons. PDF-Recommendation of the German Commission on Radiological Protection with scientific background. https://www.ssk.de/SharedDocs/Beratungsergebnisse_PDF/2018/2018-09-07doselimits.html?nn=2332186

  • Streffer C (2010) Toleranzdosen im Strahlenschutz—Entwicklung und Grundlagen. Z Med Phys 20(1):1–2

    Google Scholar 

  • StrlSchG (2017) Gesetz zum Schutz vor der schädlichen Wirkung ionisierender Strahlung (Strahlenschutzgesetz ‒ StrlSchG) vom 27. Juni 2017 (BGBl. I S. 1966), das durch Artikel 2 des Gesetzes vom 27. Juni 2017 (BGBl. I S. 1966) geändert worden ist (in German)

  • StrlSchV (2001) Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung—StrlSchV) vom 20. Juli 2001 (BGBl. I S. 1714; 2002 I S. 1459), die zuletzt durch nach Maßgabe des Artikel 10 durch Artikel 6 des Gesetzes vom 27. Januar 2017 (BGBl. I S. 114, 1222) geändert worden ist (in German)

  • StrSchV (1989) Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung—StrlSchV) 30. Juni 1989 (BGBl. I S. 1321, ber. S. 1926) (in German)

  • Suva (2019) Grenzwerte am Arbeitsplatz. Suva Gesundheitsschutz, Abteilung Arbeitsmedizin, Publikationsnummer 1903.d, Luzern, Switzerland (in German)

  • Takahashi I, Abbott RD, Ohshita T, Takahashi T, Ozasa K, Akahoshi M, Fujiwara S, Kodama K, Matsumoto M (2012) A prospective follow-up study of the association of radiation exposure with fatal and non-fatal stroke among atomic bomb survivors in Hiroshima and Nagasaki (1980–2003). BMJ Open 2:e000654

    Google Scholar 

  • Takahashi I, Shimizu Y, Grant E, Cologne J, Ozasa K, Kodama K (2017) Heart disease mortality in the Life Span Study, 1950-2008. Radiat Res 187(3):319–332

    ADS  Google Scholar 

  • Tao Z, Akiba S, Zha Y, Sun Q, Zou J, Li J, Liu Y, Yuan Y, Tokonami S, Morishoma H, Koga T, Nakamura S, Sugahara T, Wei L (2012) Cancer and non-cancer mortality among inhabitants in the high background radiation area of Yangjiang, China (1979–1998). Health Phys 102:173–181

    Google Scholar 

  • Trabalka JR, Apostoaei AI, Hoffman FO, Thomas BA (2017) Kocher DC (2017) Dose and dose-rate effectiveness factors for low-LET radiation for application to NIOSH-IREP. Oak Ridge Center for Risk Analysis, Oak Ridge

    Google Scholar 

  • Tran V, Little MP (2017) Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation. Radiat Environ Biophys 56:299–328

    Google Scholar 

  • TRGS 910 (2016) Technische Regeln für Gefahrstoffe. Risikobezogenes Maßnahmenkonzept für Tätigkeiten mit krebserzeugenden Gefahrstoffen. Fassung vom 11.10.2016. Bekanntmachung des Bundesministerium für Arbeit und Soziales (BMAS), Ausgabe: Februar 2014, GMBl 2014 S. 258-270 v. 2.4.2014 [Nr. 12], zuletzt geändert und ergänzt GMBl 2016 S. 606-609 v. 29.7.2016 [Nr. 31], berichtigt, GMBl 2016 S. 791 v. 7.10.2016 [Nr. 40] (in German)

  • UNSCEAR (2006) United Nations Scientific Committee on the Effects of atomic radiation (UNSCEAR) 2006 Report to the General Assembly with Scientific Annexes, Volume I (Report to the General Assembly, Scientific Annexes A. Epidemiological studies of radiation and cancer and B. Epidemiological evaluation of cardiovascular disease and other non-cancer diseases following radiation exposure). United Nations, New York, 2008, ISBN 978-92-1-142263-4

  • UNSCEAR (2010) United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2010 Report, Fifty-seventh session, includes Scientific Report: Summary of low-dose radiation effects on health. New York, 2011, ISBN 9789210549158

  • Vrijheid M, Cardis E, Ashmore P, Auvinen A, Bae JM, Engels H, Gilbert E, Gulis G, Habib R, Howe G, Kurtinaitis J, Malker H, Muirhead C, Richardson D, Rodriguez-Artalejo F, Rogel A, Schubauer-Berigan M, Tardy H, Telle-Lamberton M, Usel M, Veress K (2007) Mortality from diseases other than cancer following low doses of ionising radiation: results from the 15-Country Study of nuclear industry workers. Int J Epidemiol 36(5):1126–1135

    Google Scholar 

  • Wakeford R, Kendall GM, Little MP (2009) The proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionising radiation. Leukemia 23(4):770–776

    Google Scholar 

  • Wakeford R, Azizova T, Dörr W, Garnier-Laplace J, Hauptmann M, Ozasa K, Rajaraman P, Sakai K, Salomaa S, Sokolnikov M, Stram D, Sun Q, Wojcik A, Woloschak G, Bouffler S, Grosche B, Kai M, Little MP, Shore RE, Walsh L, Rühm W (2019) The dose and dose-rate effectiveness factor (DDREF). Health Phys 116:96–99

    Google Scholar 

  • Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G (2004) Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat Res 161(6):622–632

    ADS  Google Scholar 

  • Zablotska LB, Lane RSD, Frost SE (2013) Mortality (1950–1999) and cancer incidence (1969–1999) of workers in The Port Hope cohort study exposed to a unique combination of radium, uranium and gamma-ray doses. Br Med J Open 3(2):e002159

    Google Scholar 

  • Zablotska LB, Lane RSD, Thompson PA (2014) A reanalysis of cancer mortality in Canadian nuclear workers (1956–1994) based on revised exposure and cohort data. Br J Cancer 110(1):214–223

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Sabine Reinöhl-Kompa for assistance in preparing this paper and for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Rühm.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rühm, W., Breckow, J., Dietze, G. et al. Dose limits for occupational exposure to ionising radiation and genotoxic carcinogens: a German perspective. Radiat Environ Biophys 59, 9–27 (2020). https://doi.org/10.1007/s00411-019-00817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00817-x

Keywords

Navigation