Radiation and Environmental Biophysics

, Volume 57, Issue 2, pp 189–193 | Cite as

A cautionary comment on the generation of Berkson error in epidemiological studies

  • Sabine Hoffmann
  • Chantal Guihenneuc
  • Sophie Ancelet
Short Communication


Exposure measurement error can be seen as one of the most important sources of uncertainty in studies in epidemiology. When the aim is to assess the effects of measurement error on statistical inference or to compare the performance of several methods for measurement error correction, it is indispensable to be able to generate different types of measurement error. This paper compares two approaches for the generation of Berkson error, which have recently been applied in radiation epidemiology, in their ability to generate exposure data that satisfy the properties of the Berkson model. In particular, it is shown that the use of one of the methods produces results that are not in accordance with two important properties of Berkson error.


Radon Measurement error Uranium miners 


  1. Allodji RS, Leuraud K, Thiébaut AC, Henry S, Laurier D, Bénichou J (2012) Impact of measurement error in radon exposure on the estimated excess relative risk of lung cancer death in a simulated study based on the French Uranium Miners’ cohort. Radiat Environ Biophys 51:151–163CrossRefGoogle Scholar
  2. Allodji RS, Thiébaut A, Leuraud K, Rage E, Henry S, Laurier D et al (2012) The performance of functional methods for correcting non-Gaussian measurement error within Poisson regression: corrected excess risk of lung cancer mortality in relation to radon exposure among French uranium miners. Stat Med 31(30):4428–4443MathSciNetCrossRefGoogle Scholar
  3. Buonaccorsi JP, Lin CD (2002) Berkson measurement error in designed repeated measures studies with random coefficients. J Stat Plan Inference 104:53–72MathSciNetCrossRefzbMATHGoogle Scholar
  4. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement error in nonlinear models: a modern perspective. Chapman Hall, Boca RatonCrossRefzbMATHGoogle Scholar
  5. Cook JR, Stefanski LA (1994) Simulation-extrapolation estimation in parametric measurement error models. J Am Stat Assoc 89:1314–1328CrossRefzbMATHGoogle Scholar
  6. Hoffmann S, Rage E, Laurier D, Laroche P, Guihenneuc C, Ancelet S (2017) Accounting for Berkson and classical measurement error in radon exposure using a Bayesian structural approach in the analysis of lung cancer mortality in the French cohort of uranium miners. Radiat Res 187:196–209ADSCrossRefGoogle Scholar
  7. Hoffmann S, Laurier D, Rage E, Guihenneuc C, Ancelet S (2018) Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models. PloS One 13(2):e0190792CrossRefGoogle Scholar
  8. Kwon D, Hoffman FO, Moroz BE, Simon SL (2016) Bayesian dose–response analysis for epidemiological studies with complex uncertainty in dose estimation. Stat Med 35:399–423MathSciNetCrossRefGoogle Scholar
  9. Küchenhoff H, Bender R, Langner I (2007) Effect of Berkson measurement error on parameter estimates in Cox regression models. Lifetime Data Anal 13:261–272MathSciNetCrossRefzbMATHGoogle Scholar
  10. Michels KB (2001) A renaissance for measurement error. Int J Epidemiol 30:421–422CrossRefGoogle Scholar
  11. Simon SL, Hoffman FO, Hofer E (2015) The two-dimensional Monte Carlo: a new methodological paradigm for dose reconstruction for epidemiological research. Radiat Res 183:27–41ADSCrossRefGoogle Scholar
  12. Stayner L, Vrijheid M, Cardis E, Stram DO, Deltour I, Gilbert SJ et al (2007) A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers. Radiat Res 168:757–763ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE-SANTE/SESANE/LEPIDFontenay-aux-RosesFrance
  2. 2.Faculté de PharmacieUniversité Paris DescartesParisFrance

Personalised recommendations