Radiation and Environmental Biophysics

, Volume 57, Issue 2, pp 123–132 | Cite as

Long-term effects of low-dose mouse liver irradiation involve ultrastructural and biochemical changes in hepatocytes that depend on lipid metabolism

  • Malgorzata Lysek-Gladysinska
  • Anna Wieczorek
  • Anna Walaszczyk
  • Karol Jelonek
  • Artur Jozwik
  • Monika Pietrowska
  • Wolfgang Dörr
  • Dorota Gabrys
  • Piotr Widlak
Original Article


The aim of the study was to investigate long-term effects of radiation on the (ultra)structure and function of the liver in mice. The experiments were conducted on wild-type C57BL/6J and apolipoprotein E knock-out (ApoE−/−) male mice which received a single dose (2 or 8 Gy) of X-rays to the heart with simultaneous exposure of liver to low doses (no more than 30 and 120 mGy, respectively). Livers were collected for analysis 60 weeks after irradiation and used for morphological, ultrastructural, and biochemical studies. The results show increased damage to mitochondrial ultrastructure and lipid deposition in hepatocytes of irradiated animals as compared to non-irradiated controls. Stronger radiation-related effects were noted in ApoE−/− mice than wild-type animals. In contrast, radiation-related changes in the activity of lysosomal hydrolases, including acid phosphatase, β-glucuronidase, N-acetyl-β-d-hexosaminidase, β-galactosidase, and α-glucosidase, were observed in wild type but not in ApoE-deficient mice, which together with ultrastructural picture suggests a higher activity of autophagy in ApoE-proficient animals. Irradiation caused a reduction of plasma markers of liver damage in wild-type mice, while an increased level of hepatic lipase was observed in plasma of ApoE-deficient mice, which collectively indicates a higher resistance of hepatocytes from ApoE-proficient animals to radiation-mediated damage. In conclusion, liver dysfunctions were observed as late effects of irradiation with an apparent association with malfunction of lipid metabolism.


Ionizing radiation Heart Liver Ultrastructure Lysosomes 



The research received funding from the European Atomic Energy Community’s Seventh Framework Programme (FP7/2007–2011) under the grant agreement no. 211403 (CARDIORISK) and from the National Science Center, Poland under the grant no. N-402685640. We thank Dr Marta Gawin for critical reading of the manuscript. We also acknowledge the contribution of Hermann Fuchs, PhD, regarding estimation of the dose to the liver.

Supplementary material

411_2018_734_MOESM1_ESM.jpg (69 kb)
Distribution of radiation dose. Intensity and space distribution of a dose (A and B), and a shape of irradiated mouse (C). Heart area and liver area are marked with red and blue, respectively, on the radiography picture; the arrowhead points the liver are used for experiments (JPG 68 KB)


  1. Abdel-Moneim AM, Al.-Kahtani M, El-Kersh MA, Al-Omair MA (2015) Free radical-scavenging anti-inflammatory/anti-fibrotic and hepatoprotective actions of taurine and silymarin against CCl4 induced rat liver damage. PLoS One. Google Scholar
  2. Ahmed RG (2005) Damage pattern as function of various types of radiations. Radiology 15(4):135–147Google Scholar
  3. Ahn SJ, Kim DK, Kim SS, Bae ChB, Cho HJ, Kim HG, Kim YJ, Lee JH, Lee HJ, Lee MY, Kim KB, Cho JH, Cho SW, Cheong JY (2012) Association between apolipoprotein E genotype, chronic liver disease, and hepatitis B virus. Clin Mol Hepatol 18:295–230. CrossRefGoogle Scholar
  4. Alvarez AM, Mukherjee D (2011) Liver abnormalities in cardiac diseases and heart failure. Int J Angiol 20:135–142. CrossRefGoogle Scholar
  5. Ayala-Lopez W, Xia W, Varghese B, Low PS (2010) Imaging of atherosclerosis in apoliprotein E knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages. J Nucl Med 51:768–774. CrossRefGoogle Scholar
  6. Bakshi MV, Azimzadeh O, Barjaktarovic Z, Kempf SJ, Merl-Pham J, Hauck SM, Buratovic S, Eriksson P, Atkinson MJ, Tapio S (2015) Total body exposure to low-dose ionizing radiation induces long-term alterations to the liver proteome of neonatally exposed mice. J Proteome Res 14(1):366–373. CrossRefGoogle Scholar
  7. Balcerzyk A, Zak I (2004) Apolipoproteina E—rola polimorfizmu w patogenezie licznych chorób. Postępy Biochemii 50(4):344–352Google Scholar
  8. Bandorowicz-Pikuła J, Pikuła S, Tylki-Szymańska A (2011) Pathogenesis of lipid storage diseases. Postępy Biochemii 57(2):158–167Google Scholar
  9. Barrett AJ (1972) Lysosomal enzymes. In: Dingle JT (ed) Lysosomes. A laboratory handbook. North-Holland, Amsterdam, pp 46–135Google Scholar
  10. Bonomini F, Rodella LF, Moghadasian M, Lonati C, Rezzani R (2013) Apolipoprotein E deficiency and a mouse model of accelerated liver aging. Biogerontology 14:209–220. CrossRefGoogle Scholar
  11. Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269(8):1996–2002CrossRefGoogle Scholar
  12. Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 646354:13. Google Scholar
  13. Cursio R, Colosetti O, Codogno P, Cuervo AM, Shen HM (2015) The role of autophagy in liver diseases: mechanisms and potential therapeutic targets. Hindawi Publ Corp BioMed Res Int 2015:2. Google Scholar
  14. Ćwiklińska A, Strzelecki A, Kortas-Stempak A, Zdrojewski Z, Wróblewska A (2015) HDL-containing HDL and the development of atherosclerosis. Postepy Hig Med Dosw 2(69):1–9Google Scholar
  15. Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, Mabuchi K, Marks LB, Mettler FA, Pierce LJ, Trott KR, Yeh ET, Shore RE (2010) Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys 76(3):656–665. CrossRefGoogle Scholar
  16. Duchen MR, Szabadkai G (2010) Roles of mitochondria in human disease. Essays Biochem 47:115–137. Google Scholar
  17. El-Missiry MA, Fayed TA, El-Sawy MR, El-Sayed AA (2007) Ameliorative effect of melatonin against gamma-irradiation-induced oxidative stress and tissue injury. Ecotoxicol Environ Saf 66(2):278–228. CrossRefGoogle Scholar
  18. Gharib OA, Ellatif UAA, Abdellah NM, Mohammad MA (2012) Radio-protective response on the environmental pollutant induced oxidative stress. Adv Biosci Biotechnol 3:989–996. CrossRefGoogle Scholar
  19. Hauser PS, Narayanaswami V, Ryan RO (2011) Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 50(1):62–74. CrossRefGoogle Scholar
  20. Hollander VP (1970) Acid phosphatases. In: Boyer PD (ed) The enzymes. Academic, London, pp 449–498Google Scholar
  21. Ivanova DG, Yankova TM (2013) The free radical theory of aging in search of a strategy for increasing life span. Folia Med (Plovdiv) 55(1):33–41Google Scholar
  22. Jawien J, Csanyi G, Gajda M, Mateuszuk L, Lomnicka M, Korbut R, Chlopicki S (2007) Ticlopidine attenuates progression of atherosclerosis in apolipoprotein E and low density lipoprotein receptor double knockout mice. Eur J Pharmacol 556(1–3):129–135. CrossRefGoogle Scholar
  23. Kirschke H, Wiederanders B (1984) Methoden zur Aktivitätsbestimmung von Proteinases” Martin-Luther Universität Halle-Wittenberg, Wissenschaftliche Beitrage Halle/Salle pp 11–17Google Scholar
  24. Kmiecik B, Skotny A, Batycka M, Wawrzaszek R, Rybak Z (2013) Influence of oxidative stress on tissue regeneration. Polim Med 43(3):191–197Google Scholar
  25. Kuipers F, Jong MC, Lin Y, Eck M, Havinga R, Bloks V, Verkade HJ, Hofker MH, Moshage H, Berkel TJ, Vonk RJ, Havekes LM (1997) Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E-deficient mouse hepatocytes. J Clin Invest 11:2915–2922. CrossRefGoogle Scholar
  26. Kumarathasan P, Vincent R, Blais E, Saravanamuthu A, Gupta P, Wyatt H, Mitchel R, Hannan M, Trivedi A, Whitman S (2013) Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60(γ) radiation. PLoS One 8(6):e65486. ADSCrossRefGoogle Scholar
  27. Kurz T, Terman A, Brunk UT (2007) Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 462:220–230. CrossRefGoogle Scholar
  28. Lagouge M, Larsson NG (2013). The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med 273(6):529–543. CrossRefGoogle Scholar
  29. Lamparska-Przybysz M, Motyl T (2005) Autophagy the tool of cancer cell survival or death. Postepy Biologii Komórki 32(1):13–22Google Scholar
  30. Leach E (2009) Macrolipophagy: too much fat spolis the autophagic appetite. Lipidom Gatew. Google Scholar
  31. Levine B (2005) Eating oneself and uninvited guests; autophagy-related pathways in cellular defense. Cell 120:159–162. Google Scholar
  32. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. CrossRefGoogle Scholar
  33. Madrigal-Matute J, Cuervo AM (2016) Regulation of liver metabolism by autophagy. Gastroenterology. 150(2):328–339. CrossRefGoogle Scholar
  34. Marmagkiolis K, Finch W, Tsitlakidou D, Josephs T, Iliescu C, Best JF, Yang EH (2016) Radiation toxicity to the cardiovascular system. Curr Oncol Rep 18(3):15. CrossRefGoogle Scholar
  35. Marzella L, Glaumann H (1980a) Increased degradation in rat liver induced by vinblestine II. Morphological characterization. J Lab Invest 42:18–27Google Scholar
  36. Marzella L, Glaumann H (1980b) Increased degradation in rat liver induced by vinblastine I. Biochemical Characterization. J Lab Invest 42:8–17Google Scholar
  37. Mitchel REJ, Hasub M, Bugden M, Wyatt H, Little MP, Gola A, Hildebrandt G, Priest ND, Whitman SC (2011) Low dose radiation exposure and atherosclerosis in ApoE–/– mice. Radiat Res 175(5):665–676. ADSCrossRefGoogle Scholar
  38. Monceau V, Meziani L, Strup-Perrot C, Morel E, Schmidt M, Haagen J, Escoubet B, Dörr W (2013) Enhanced sensitivity to low dose irradiation of ApoE–/– mice mediated by early pro-inflammatory profile and delayed activation of the TGFβ1 cascade involved in fibrogenesis. PLoS One. Google Scholar
  39. Ogier-Denis E, Codogno P (2003) Autophagy: a barier or an adaptive response to cancer. Biochem Biophys Acta 1603:113–128. Google Scholar
  40. Patties I, Haagen J, Dörr W, Hildebrandt G, Glasow A (2015) Late inflammatory and trombotic changes in irradiated heart of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice. Strahlenther Onkol 191:172–179. CrossRefGoogle Scholar
  41. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2009) Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 50(Suppl):S178–S182. CrossRefGoogle Scholar
  42. Persson HL, Kurz T, Eaton JW, Brunk UT (2005) Radiation-induced cell death: importance of lysosomal destabilization. Biochem J 389:877–884. CrossRefGoogle Scholar
  43. Posse de Chaves E, Narayanaswami V (2008) Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol 3(5):505–530CrossRefGoogle Scholar
  44. Shah SC, Sass DA (2015) Cardiac hepatopathy: a review of liver dysfunction in heart failure. Liver Res Open J 1(1)1–10. CrossRefGoogle Scholar
  45. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 5 306(5698):990–995. CrossRefGoogle Scholar
  46. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(30):1131–1135. ADSCrossRefGoogle Scholar
  47. Stell D, Wall WJ (2003) The impact of aging on the liver. Geriatr Aging 6(3):36–37Google Scholar
  48. Stewart FA, Heeneman S, Poele J, Kruse J, Russell NS, Gijbels M, Daemenn M (2006) Ionizing radiation accelerates the development of atherosclerotic lesion in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168(2):649–658. CrossRefGoogle Scholar
  49. Tanaka K, Sata M, Fukuda D, Suematsu Y, Motomura N, Takamoto S, Hirata Y, Nagai R (2005) Age-associated aortic stenosis in apoliporotein E-deficient mice. J Am Coll Cardiol 46(1):134–141. CrossRefGoogle Scholar
  50. Telbisz A, Kovács A, Somosy Z (2002) Influence of X-ray on the autophagic-lysosomal system in rat pancreatic acini. Micron 33(2):143–151. CrossRefGoogle Scholar
  51. Van Eeden SF, Sin DD (2013) Oxidative stress in chronic obstructive pulmonary disease: a lung and systemic process. Can Respir J 20(1):27–29CrossRefGoogle Scholar
  52. Vasquez EC, Peotta VA, Gava AL, Pereira TM, Meyrelles SS (2012) Cardiac and vascular phenotypes in the apolipoprotein E-deficient mouse. J Biomed Sci 13:19–22. Google Scholar
  53. Yen WL, Klionsky D (2008) How to live long and prosper: autophagy, mitochondria and aging. Physiology 23:248–262. CrossRefGoogle Scholar
  54. Yi L, Hu N, Yin J, Sun J, Mu H, Dai K, Ding D (2018) Up-regulation of calreticulin in mouse liver tissues after long-term irradiation with low dose-rate gamma rays. PLoS One. Google Scholar
  55. Zhang J (2013) Autophagy and mitophagy in cellular damage control. Redox Biol 1:19–23. CrossRefGoogle Scholar
  56. Zhang HL, Wu J, Zhu J (2010) The immune-modulatory role of apolipoprotein E with emphasis on multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Dev Immunol 186813:10. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Malgorzata Lysek-Gladysinska
    • 1
  • Anna Wieczorek
    • 1
  • Anna Walaszczyk
    • 2
  • Karol Jelonek
    • 2
  • Artur Jozwik
    • 5
  • Monika Pietrowska
    • 2
  • Wolfgang Dörr
    • 3
    • 4
  • Dorota Gabrys
    • 2
  • Piotr Widlak
    • 2
  1. 1.Department of Cell Biology and Electron Microscopy, Institute of BiologyUniversity of Jan KochanowskiKielcePoland
  2. 2.Maria Sklodowska-Curie Institute, Oncology CenterGliwicePoland
  3. 3.Department of Radiotherapy and Radiation Oncology, Medical Faculty Carl Gustav CarusUniversity of TechnologyDresdenGermany
  4. 4.Department of Radiation Oncology, ATRAB, Applied and Translational RadiobiologyMedical University ViennaViennaAustria
  5. 5.Institute of Genetics and Animal BreedingPolish Academy of SciencesJastrzebiecPoland

Personalised recommendations