Concentrations of Pt, Pd, S, As, Se and Te in silicate melts at sulfide, arsenide, selenide and telluride saturation: evidence of PGE complexing in silicate melts?

Abstract

Even though platinum group elements (PGE) solubilities are measured relative to pure metals, the PGE are assumed to dissolve as oxide complexes in silicate melts. PGE-oxide phases are, however, not known in magmatic rocks; in many cases PGE are associated with discrete magmatic phases (alloys, arsenides, bismuthotellurides, antimonides and sulfides). Here, we determine the concentrations of Pt, Pd, S, As, Se and Te in basaltic melts saturated with Fe, Pt or Pd sulfides, arsenides, selenides and tellurides and note that the solubilities of these elements are largely variable and depend on the metal–ligand reservoir in equilibrium. We equilibrated basaltic melts with immiscible Fe, Pt, and Pd sulfide, arsenide, selenide and telluride melts in a piston cylinder apparatus at 1250 °C, 0.5 GPa and relative fO2 of ~ FMQ to FMQ-1.5. The concentrations of S, As, Se and Te in the basaltic melt vary considerably with the metal–ligand reservoir; the highest concentrations are recorded when the ferrous iron cation is the principal metal ligand. When instead Pt-(S/As/Se/Te) or Pd-(S/As/Se/Te) are used, the concentrations of S, As, Se and Te fall drastically. Platinum and Pd increase the activities of semimetals and chalcogenes in the silicate melt more than Fe does. Implications are that Pt and Pd can preferentially form stable associations (fundamental building blocks) with chalcogens and semimetals before the melt attains saturation in Fe-chalcogens or Fe-semimetals. Estimated concentrations of Pt–ligand and Pd–ligand required to saturate silicate melts in some Pt–ligand and Pd–ligand minerals are close to their abundances in the parent magmas of some layered intrusions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anenburg M, Mavrogenes JA (2016) Experimental observations on noble metal nanonuggets and Fe-Ti oxides, and the transport of platinum group elements in silicate melts. Geochim Cosmochim Acta 192:258–278

    Article  Google Scholar 

  2. Barnes S-J, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg layered suite, Bushveld complex, South Africa: implications for the formation of the platinum-group element deposits. Econ Geol 105:1491–1511

    Article  Google Scholar 

  3. Barnes SJ, Mungall JE, Maier WD (2015) Platinum group elements in mantle melts and mantle samples. Lithos 232:395–417

    Article  Google Scholar 

  4. Bennet NR, Brenan JM, Koga KT (2014) The solubility of platinum in silicate melt under reducing conditions: results from experiments without metal inclusions. Geochim Cosmochim Acta 133:422–442

    Article  Google Scholar 

  5. Borisov A, Palme H (1997) Experimental determination of the solubility of platinum in silicate melts. Geochim Cosmochim Acta 61:4349–4357

    Article  Google Scholar 

  6. Borisov A, Palme H (2000) Solubility of noble metals as derived from experiments in Fe-free systems. Am Miner 85:1665–1673

    Article  Google Scholar 

  7. Borisov A, Palme H, Spettel B (1994) Solubility of Pd in silicate melts: implications for core formation in the Earth. Geochim Cosmochim Acta 58:705–716

    Article  Google Scholar 

  8. Brenan JM, Andrew D (2001) High temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in magic magma. Can Mineral 39:341–360

    Article  Google Scholar 

  9. Brenan J (2015) Se–Te fractionation by sulfide–silicate melt partitioning: implications for the composition of mantle-derived magmas and their melting residues. Earth Planet Sci Lett 422:45–57

    Article  Google Scholar 

  10. Burns PC (2011) Nanoscale uranium-based cage clusters inspired by uranium mineralogy. Mineral Mag 75:1–25

    Article  Google Scholar 

  11. Canali AC, Brenan J, Sullivan NA (2017) Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200 °C with implications for arsenic speciation and platinum sequestration in mafic igneous systems. Geochim Cosmochim Acta 216:153–168

    Article  Google Scholar 

  12. Ertel W, O’Neill HSC, Sylvester PJ, Dingwell DB (1999) Solubilities of Pt and Rh in a haplobasaltic silicate melt at 1300 °C. Geochim Cosmochim Acta 63:2439–2449

    Article  Google Scholar 

  13. Ertel W, Walter MJ, Drake MJ, Sylvester PJ (2006) Experimental study of platinum solubility in silicate melt to 14 GPa and 2273 K: implications for accretion and core formation in earth. Geochim Cosmochim Acta 70:2591–2602

    Article  Google Scholar 

  14. Ertel W, Dingwell DB, Sylvester PJ (2008) Siderophile elements in silicate melts—a review of the mechanically assisted equilibration technique and the nanonugget issue. Chem Geol 248:119–139

    Article  Google Scholar 

  15. Fonseca RC, Kirchenbaur M, Ballhaus C, Münker C, Zirner A, Gerdes A, Heusera A, Botcharnikov R, Lenting C (2017) Fingerprinting fluid sources in Troodos ophiolite complex orbicular glasses using high spatial resolution isotope and trace element geochemistry. Geochim Cosmochim Acta 200:145–166

    Article  Google Scholar 

  16. French BM, Eugster HP (1965) Experimental control of oxygen fugacities by graphite-gas equilibriums. J Geophys Res 7:1529–1539

    Article  Google Scholar 

  17. Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822

    Article  Google Scholar 

  18. Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43(7):2348–2371

    Article  Google Scholar 

  19. González-Jiménez JM, Roqué-Rosell J, Jiménez-Franco A et al (2019) Magmatic platinum nanoparticles in metasomatic silicate glasses and sulfides from Patagonian mantle xenoliths. Contrib Miner Petrol 174:47. https://doi.org/10.1007/s00410-019-1583-5

    Article  Google Scholar 

  20. Helmy HM, Bragagni A (2017) Platinum-group elements fractionation by selective complexing: the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020°C. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2017.01.040(in press)

    Article  Google Scholar 

  21. Helmy HM, Fonseca R (2017) The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700 C and the role of Se in platinum-group elements fractionation in sulfide melts. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2017.05.010

    Article  Google Scholar 

  22. Helmy HM, Ballhaus C, Berndt J, Bockrath C, Wohlgemuth- Uberwasser C (2007) Formation of Pt, Pd and Ni tellurides: experiments in sulfide-telluride systems. Contrib Mineral Petrol 153:577–591

    Article  Google Scholar 

  23. Helmy HM, Ballhaus C, Wohlgemuth-Uberwasser C, Fonseca R, Laurenz V (2010) Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt—application to magmatic sulfide deposits. Geochem Cosmochem Acta 74:6174–6179

    Article  Google Scholar 

  24. Helmy HM, Ballhaus C, Fonseca R, Wirth R, Nagel T, Tredoux M (2013a) Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nat Commun 4:2405. https://doi.org/10.1038/ncomms3405

    Article  Google Scholar 

  25. Helmy HM, Ballhaus C, Fonseca R, Nagle T (2013b) Fractionation of platinum, palladium, nickel, and copper in sulfide–arsenide systems at magmatic temperature. Contrib Minerol Petrol 166:1725–1737

    Article  Google Scholar 

  26. Helmy HM, Stumpfl EF, Kamel OA (1995) Platinum group minerals from the metamorphosed Abu Swayel Cu-Ni-PGE mineralization, South Eastern Desert, Egypt. Econ Geol 90:2350–2360

    Article  Google Scholar 

  27. Holwell DA, McDonald I (2007) Partitioning of platinum-group elements in the Platreef at Overysel, northern Bushveld complex: a combined PGM and LA ICP-MS study. Contrib Minerol Petrol 154:171–190

    Article  Google Scholar 

  28. Jenner FE, Arculus RJ, Mavrogenes JA, Dyriw NJ, Nebel O, Hauri EH (2012) Chalcophile element systematics in volcanic glasses from the Northwestern Lau Basin. Geochem Geophys Geosyst 13(6):1–25

    Article  Google Scholar 

  29. Jenner FE, Holden P, Mavrogenes JA, O’Neill HSC, Allen C (2009) Determination of selenium concentrations in NIST SRM 610, 612, 614 and geological glass reference materials using the electron probe, LA-ICP-MS and SHRIMP II. Geostand Geoanal Res 33:309–317

    Article  Google Scholar 

  30. Jochum et al (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  31. Jugo P, Luth R, Richards J (2005) An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 C and 10 GPa. J Petrol 46:783–798

    Article  Google Scholar 

  32. Kamenetsky VS, Zelensky M (2020) Origin of noble-metal nuggets in sulfide-saturated arc magmas: a case study of olivine-hosted sulfide melt inclusions from the Tolbachik volcano (Kamchatka, Russia). Geology 48:620–624. https://doi.org/10.1130/G47086.1

    Article  Google Scholar 

  33. Kamenetsky VS, Park J-W, Mungall JE, Pushkarev EV, Ivanov AV, Kamenetsky MB, Yaxley GM (2015) Crystallization of platinum-group minerals from silicate melts, evidence from Cr-spinel–hosted inclusions in volcanic rocks. Geology 43:903–906

    Article  Google Scholar 

  34. Klimm K, Kohn SC, Botcharnikov RE (2012) The dissolution mechanism of sulphur in hydrous silicate melts. II: solubility and speciation of sulfur in hydrous silicate melts as a function of fO2. Chem Geol 322–323:250–267

    Article  Google Scholar 

  35. Laurenz V, Fonseca ROC, Ballhaus C, Jochum KP, Sylvester PJ (2013) The solubility of palladium and ruthenium in picritic melts, 2. The effect of sulfur. Geochim Cosmochim Acta 108:172–183

    Article  Google Scholar 

  36. Lorand J-P, Alard O, Luguet A (2010) Platinum-group element micronuggets and refertilization process in lherz orogenic peridotite (northeastern pyrenees, france). Earth Planet Sci Lett 289(1):298–310

    Article  Google Scholar 

  37. Maier WD, Rasmussen B, Fletcher IR, Godel B, Barnes SJ, Fisher LA, Yang SH, Huhma H, Lahaye Y (2015) Petrogenesis of the ~2·77 Ga Monts de Cristal complex, Gabon: evidence for direct precipitation of Pt-arsenides from Basaltic MAGMA. J Petrol 56:1285–1308

    Article  Google Scholar 

  38. Mallmann G, O’Neil HStC (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J Petrol 54:933–949

    Article  Google Scholar 

  39. Mansur ET, Barnes S-J (2020) The role of Te, As, Bi, Sn and Sb during the formation of platinum-group-element reef deposits: examples from the Bushveld and Stillwater complexes. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2020.01.008

    Article  Google Scholar 

  40. McDonald I (2008) Platinum-group element and sulfide mineralogy in ultramafic complexes at western Andriamena, Madagascar. Appl Earth Sci Trans Inst Min Metall Sect 117:B1–B10

    Google Scholar 

  41. Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458. https://doi.org/10.1093/petrology/38.10.1419

    Article  Google Scholar 

  42. Mungall JE, Brenan JM (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289

    Article  Google Scholar 

  43. O'Driscoll B, González-Jiménez JM (2016) Petrogenesis of the platinum-group minerals. Rev Mineral Geochem 81(1):489–578

    Article  Google Scholar 

  44. Sindeeva ND (1964) Mineralogy and types of deposits of selenium and tellurium. Wiley Inter-science, New York, p 363

    Google Scholar 

  45. Stockman HW, Hlava PF (1984) Platinum-group minerals in alpine chromitites from southwestern Oregon. Econ Geol 79:491–508. https://doi.org/10.2113/gsecongeo.79.3.491

    Article  Google Scholar 

  46. Sullivan NA, Zajac Z, Brennan JM (2018) The solubility of Pd and Au in hydrous intermediate silicate melts: the effect of oxygen fugacity and the addition of Cl and S. Geochim Cosmochim Acta 231:15–29

    Article  Google Scholar 

  47. Walter MJ, Newsom HE, Ertel W, Holzheid A (2000) Siderophile elements in the earth and moon: metal/silicate partitioning and implications for core formation. In: Canup RM, Righter K (eds) Origin of the earth and moon. University of Arizona Press, Tucson

    Google Scholar 

  48. Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, micro-structure and crystal structure in geomaterials on a nanometer scale. Chem Geol 261:217–229

    Article  Google Scholar 

  49. Wohlgemuth-Ueberwasser CC, Ballhaus C, Berndt J (2007) Synthesis of PGE sulfide standards for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Contrib Miner Petrol 154:607–617

    Article  Google Scholar 

  50. Wykes JL, O’Neill HSC, Mavrogenes JH (2015) The effect of FeO on the sulfur content at sulfide saturation (SCSS) and the selenium content at selenide saturation of silicate melts. J Petrology 56(7):1407–1424

    Article  Google Scholar 

Download references

Acknowledgements

H.M. Helmy acknowledges the support of the Alexander von Humboldt Foundation through a Georg Forster Research Award. F.P.L was supported by a PhD. scholarship from DAAD/CNPq (248562/2013-4). Richard Wirth and Anja Schreiber, GFZ Potsdam are thanked for the FIB-TEM analyses. Two anonymous reviewers are thanked for critical comments on the manuscript. Mark Ghiorso is thanks for editorial handling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hassan M. Helmy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Mark S Ghiorso.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Helmy, H.M., Ballhaus, C., Fonseca, R.O.C. et al. Concentrations of Pt, Pd, S, As, Se and Te in silicate melts at sulfide, arsenide, selenide and telluride saturation: evidence of PGE complexing in silicate melts?. Contrib Mineral Petrol 175, 65 (2020). https://doi.org/10.1007/s00410-020-01705-0

Download citation

Keywords

  • Platinum-group elements
  • Semimetals
  • Chalcogens
  • Solubility
  • Complexing
  • Silicate melts