Titanium isotopic fractionation during magmatic differentiation

Abstract

To better investigate the behavior of titanium (Ti) isotopes during magmatic processes, we report high-precision Ti isotope compositions for 60 terrestrial igneous rocks from different geological settings worldwide. Based on their major element compositions and petrographic descriptions, these samples can be subdivided into two groups: Fe-Ti oxide unsaturated and Fe-Ti oxide saturated. The Fe-Ti oxide unsaturated group samples show a narrow δ49/47Ti (δ49/47Ti = [(49Ti/47Ti)sample/(49Ti/47Ti)OL-Ti] × 1000) range (− 0.036 ± 0.043‰ to 0.082 ± 0.021 ‰), and no correlation between δ49/47Ti and the degree of differentiation is observed. By contrast, Fe-Ti oxide saturated group samples show a remarkable δ49/47Ti variation, ranging from 0.005 ± 0.018‰ to 1.914 ± 0.006 ‰, which are positively correlated with SiO2 contents, and negatively correlated with MgO contents. In particular, multiple SiO2 vs. δ49/47Ti trends are observed in Fe-Ti oxide saturated group, which are controlled by crystal fractionation degrees, magma SiO2 compositions, and Fe-Ti oxide compositions during magma differentiation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Antonelli MA, Schiller M, Schauble EA, Mittal T, DePaolo DJ, Chacko T, Grew ES, Tripoli B (2019) Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals. Earth Planet Sci Lett 517:71–82

    Google Scholar 

  2. Badullovich N, Moynier F, Creech J, Teng FZ, Sossi PA (2017) Tin isotopic fractionation during igneous differentiation and Earth’s mantle composition. Geochem Persp Let 5:24–28

    Google Scholar 

  3. Baldridge WS, McGetchin TR, Frey FA, Jarosewich E (1973) Magmatic evolution of Hekla. Iceland Contrib Miner Petrol 42:245–258

    Google Scholar 

  4. Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Miner Petrol 114:331–348

    Google Scholar 

  5. Bosi F, Halenius U, Skogby H (2009) Crystal chemistry of the magnetite-ulvospinel series. Am Mineral 94:181–189

    Google Scholar 

  6. Carmichael ISE, Ghiorso MS (1986) Oxidation-reduction relations in basic magma: a case for homogeneous equilibrium. Earth Planet Sci Lett 78:200–210

    Google Scholar 

  7. Chen H, Savage PS, Teng FZ, Helz RT, Moynier F (2013) Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth Planet Sci Lett 369–370:34–42

    Google Scholar 

  8. Clayton RN, Hinton RW, Davis AM (1988) Isotopic variations in the rock-forming elements in meteorites. Philos Trans R Soc A 325:483–501

    Google Scholar 

  9. Danyushevsky LV, Eggins SM, Falloon TJ, Christie DM (2000) H2O abundance in depleted to moderately enriched Mid-ocean ridge magmas; Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. J Petrol 41:1329–1364

    Google Scholar 

  10. Danyushevsky LV, Falloon TJ, Sobolev AV, Crawford AJ, Carroll M, Price RC (1993) The H2O content of basalt glasses from southwest Pacific backarc basins. Earth Planet Sci Lett 117:347–362

    Google Scholar 

  11. Dauphas N, Pourmand A, Teng FZ (2009) Routine isotopic analysis of iron by HR-MC-ICPMS: how precise and how accurate? Chem Geol 267:175–184

    Google Scholar 

  12. Davis AM, Zhang J, Greber ND, Hu J, Tissot FL, Dauphas N (2018) Titanium isotopes and rare earth patterns in CAIs: evidence for thermal processing and gas-dust decoupling in the protoplanetary disk. Geochim Cosmochim Acta 221:275–295

    Google Scholar 

  13. Dempsey S. R. (2012). Geochemistry of the volcanic rocks form the Sunda arc. Ph.D. thesis. Durham University

  14. Deng Z, Moynier F, Sossi PA, Chaussidon M (2018a) Bridging the depleted MORB mantle and the continental crust using titanium isotopes. Geochem Perspect Lett 1:53–64

    Google Scholar 

  15. Deng Z, Moynier F, van Zuilen K, Sossi PA, Pringle EA, Chaussidon M (2018b) Lack of resolvable titanium stable isotopic variations in bulk chondrites. Geochim Cosmochim Acta 239:409–419

    Google Scholar 

  16. Deng Z, Chaussidon M, Savage P, Robert F, Pik R, Moynier F (2019) Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1809164116

    Article  Google Scholar 

  17. Farges F, Brown GE Jr, Rehr JJ (1996a) Coordination chemistry of Ti(IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide compounds. Geochim Cosmochim Acta 60:3023–3038

    Google Scholar 

  18. Farges F, Brown GE Jr, Rehr JJ (1996b) Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure. Geochim Cosmochim Acta 60:3039–3053

    Google Scholar 

  19. Feng C, Qin T, Huang S, Wu Z, Huang F (2014) First principles investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene. Geochim Cosmochim Acta 143:132–142

    Google Scholar 

  20. Field L, Blundy J, Calvert A, Yirgu G (2013) Magmatic history of Dabbahu, a composite volcano in the Afar Rift, Ethiopia. Geol Soc Am Bull 125:128–147

    Google Scholar 

  21. Frey FA, Garcia MO, Roden MF (1994) Geochemical characteristics of Koolau Volcano: implications of intershield geochemical differences among Hawaiian volcanoes. Geochim Cosmochim Acta 58:1441–1462

    Google Scholar 

  22. Frey FA, Huang S, Xu G, Jochum KP (2016) The Geochemical components that distinguish Loa- and Kea-Trend Hawaiian shield lavas. Geochim Cosmochim Acta 185:160–181

    Google Scholar 

  23. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling JG (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518

    Google Scholar 

  24. Greaney AT, Rudnick RL, Helz RT, Gaschnig RM, Piccoli PM, Ash RD (2017) The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii. Geochim Cosmochim Acta 210:71–96

    Google Scholar 

  25. Greber ND, Dauphas N, Bekker A, Ptácěk MP, Bindeman IN, Hofmann A (2017a) Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357:1271–1274

    Google Scholar 

  26. Greber ND, Dauphas N, Puchtel IS, Hofmann BA, Arndt NT (2017b) Titanium stable isotopic variations in chondrites, achondrites and lunar rocks. Geochim Cosmochim Acta 213:534–552

    Google Scholar 

  27. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Google Scholar 

  28. Hauri EH, Whitehead JA, Hart SR (1994) Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res 99:24275–24300

    Google Scholar 

  29. Helz RT (1987) Differentiation behavior of Kilauea Iki lava lake, Kilauea Volcano, Hawaii: an overview of past and current work. In: Mysen BO (ed) Magmatic processes: physicochemical principles, vol. 1. Geochemical Society Special Publication, pp 241–258

  30. Helz RT (2012) Trace element analyses of core samples from the 1967–1988 drillings of Kilauea Iki Lava Lake, Hawaii. USGS Open-file Report 2012-1050

  31. Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki Lava Lake, Hawaii. Bull Volcanol 49:651–668

    Google Scholar 

  32. Helz RT, Kirschenbaum H, Marinenko JM, Qian R (1994) Whole-rock analyses of core samples from the 1967, 1975, 1979 and 1981 drillings of Kilauea Iki lava lake, Hawaii. USGS Open-file Report 94-684

  33. Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr B 47:462–468

    Google Scholar 

  34. Huang J, Zhang XC, Chen S, Tang LM, Wörner G, Yu HM, Huang F (2018) Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochim Cosmochim Acta 238:85–101

    Google Scholar 

  35. Huang S, Frey FA (2005) Recycled oceanic crust in the Hawaiian Plume: evidence from temporal geochemical variations within the Koolau Shield. Contrib Minerol Petrol 149(5):556–575

    Google Scholar 

  36. Huang S, Farkas J, Jacobsen SB (2010) Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett 292:337–344

    Google Scholar 

  37. Huang S, Farkas J, Jacobsen SB (2011) Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochem Cosmochim Acta 75:4987–4997

    Google Scholar 

  38. Huang S, Humayun M, Frey FA (2007) Iron/manganese ratio and manganese content in shield lavas from Ko’olau Volcano, Hawai’i. Geochem Cosmochim Acta 71:4557–4569

    Google Scholar 

  39. Jackson MG, Weis D, Huang S (2012) Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics. Geochem Geophys Geosyst 13:Q09009. https://doi.org/10.1029/2012GC004268

    Article  Google Scholar 

  40. Johnson AC, Aarons SM, Dauphas N, Nie NX, Zeng H, Helz RT, Romaniello SJ, Anbar AD (2019) Titanium isotopic fractionation in Kilauea Iki lava lake driven by oxide crystallization. Geochem Cosmochim Acta 264:180–190

    Google Scholar 

  41. Kato C, Moynier F, Foriel J, Teng FZ, Puchtel IS (2017) The gallium isotopic composition of the bulk silicate Earth. Chem Geol 448:164–172

    Google Scholar 

  42. Kommescher S, Fonseca ROC, Kurzweil F, Thiemens MM, Münker C, Sprung P (2020) Unravelling lunar mantle source processes via the Ti isotope composition of lunar basalts. Geochem Perspect Lett 13:13–18

    Google Scholar 

  43. Kööp L, Davis AM, Nakashima D, Park C, Krot AN, Nagashima K, TennerT J, Heck PR, Kita NT (2016a) A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim Cosmochim Acta 189:70–95

    Google Scholar 

  44. Kööp L, Nakashima D, Heck PR, KitaN T, Tenner TJ, Krot AN, Nagashima K, Park C, Davis AM (2016b) New constraints on the relationship between 26Al and oxygen, calcium, and titanium isotopic variation in the early Solar System from a multielement isotopic study of spinel-bonite inclusions. Geochim Cosmochim Acta 184:151–172

    Google Scholar 

  45. Lassiter JC, Hauri EH (1998) Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett 164(3–4):483–496

    Google Scholar 

  46. Leitzke FP, Fonseca ROC, Göttlicher J, Steininger R, Jahn S, Prescher C, Lagos M (2018) Ti K-edge XANES study on the coordination number and oxidation state of Titanium in pyroxene, olivine, armalcolite, ilmenite, and silicate glass during mare basalt petrogenesis. Contrib Minerol Petrol 173:103

    Google Scholar 

  47. Leya I, Schönbächler M, Krähenbühl M, Halliday AN (2009) New titanium isotope data for Allende and Efremovka CAIs. Astrophys J 702:1118–1126

    Google Scholar 

  48. Leya I, Schönbächler M, Wiechert U, Krähenbühl U, Halliday AN (2008) Titanium isotopes and the radial heterogeneity of the solar system. Earth Planet Sci Lett 266(3):233–244

    Google Scholar 

  49. Li SQ, Hegner E, Yang YZ, Wu JD, Chen F (2014) Age constraints on late Mesozoic lithospheric extension and origin of bimodal volcanic rocks from the Hailar basin, NE China. Lithos 190–191:204–219

    Google Scholar 

  50. Li Y, Wang W, Huang S, Wang K, Wu Z (2019) First principles investigation of the concentration effect on equilibrium fractionation of K isotopes in feldspars. Geochim Cosmochim Acta 245:374–384

    Google Scholar 

  51. Liu SA, Huang J, Liu J, Wörner G, Yang W, Tang YJ, Chen Y, Tang L, Zheng J, Li S (2015) Copper isotopic composition of the silicate Earth. Earth Planet Sci Lett 427:95–103

    Google Scholar 

  52. Macris CA, Manning CE, Young ED (2015) Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths. Geochim Cosmochim Acta 154:168–185

    Google Scholar 

  53. Mandl MB (2019) Titanium isotope fractionation on the Earth and moon: constraints on magmatic processes and moon formation. Ph.D. thesis. ETH Zürich. https://doi.org/10.3929/ethz-b-000351171

  54. Millet MA, Dauphas N (2014) Ultra-precise titanium stable isotope measurements by double-spike high resolution MCICP- MS. J Anal At Spectrom 29:1444–1458

    Google Scholar 

  55. Millet MA, Dauphas N, Greber ND, Burton KW, Dale CW, Debret B, Macpherson CG, Nowell GM, Williams HM (2016) Titanium stable isotope investigation of magmatic processes on the Earth and Moon. Earth Planet Sci Lett 449:197–205

    Google Scholar 

  56. Niederer FR, Papanastassiou DA, Wasserburg GJ (1980) Endemic isotopic anomalies in titanium. Astrophys J 240:L73–L77

    Google Scholar 

  57. Niemeyer S (1988) Titanium isotopic anomalies in chondrules from carbonaceous chondrites. Geochim Cosmochim Acta 52:309–318

    Google Scholar 

  58. Norman MD, GarciaM O (1999) Primitive magmas and source characteristics of the Hawaiian Plume: petrology and geochemistry of shield picrites. Earth Planet Sci Lett 168:27–44

    Google Scholar 

  59. Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: Insights from arcperidotites. Chem Geol 160:409–423

    Google Scholar 

  60. Pearce CR, Cohen AS, Parkinson IJ (2009) Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICPMS. Geostand Geoanal Res 33:219–229

    Google Scholar 

  61. Pietruszka AJ, Heaton DE, Marske JP, Garcia MO (2015) Two magma bodies beneath the summit of Kīlauea Volcano unveiled by isotopically distinct melt deliveries from the mantle. Earth Planet Sci Lett 413:90–100

    Google Scholar 

  62. Pietruszka AJ, Norman MD, Garcia MO, Marske JP, Burns DH (2013) Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet Sci Lett 361:298–309

    Google Scholar 

  63. Pitcher L, Helz RT, Walker RJ, Piccoli P (2009) Fractionation of platinum-group elements and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii. Chem Geol 260:196–210

    Google Scholar 

  64. Rudge JF, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431

    Google Scholar 

  65. Shields WR, Murphy JT, Cantazaro EJ, Garner EL (1966) Absolute isotopic abundance ratios and the atomic weight of a reference sample of chromium. J Res Natl Bur Stand 70A:193–197

    Google Scholar 

  66. Simon JI, Jordan MK, Tappa MJ, Schauble EA, Kohl IE, Young ED (2017) Calcium and titanium isotope fractionation in refractory inclusions: tracers of condensation and inheritance in the early solar protoplanetary disk. Earth Planet Sci Lett 472:277–288

    Google Scholar 

  67. Smyth JR, Bish L (1988) Crystal structure and cation sites of the rock forming minerals. Allen & Unwin, Boston

    Google Scholar 

  68. Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Google Scholar 

  69. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316(5823):412–417

    Google Scholar 

  70. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Google Scholar 

  71. Tang SH, Li J, Ma JX, Zhao XM, Zhu XK (2018) Titanium separation and Titanium isotope determination by double spike multicollector inductively coupled plasma mass spectrometry. Chin J Anal Chem 46(10):1830–1835

    Google Scholar 

  72. Teng FZ, Dauphas N, Helz RT (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320(5883):1620–1622

    Google Scholar 

  73. Teng FZ, Dauphas N, Helz RT, Gao S, Huang S (2011) Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 308:317–324

    Google Scholar 

  74. Teng FZ, Li WY, Ke S, Marty B, Dauphas N, Huang S, Wu FY, Pourmand A (2010) Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 74:4150–4166

    Google Scholar 

  75. Teng FZ, Wadhwa M, Helz RT (2007) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett 261(1–2):84–92

    Google Scholar 

  76. Teplow W, Marsh B, Hulen J, Spielman P, Kaleeikini M, Fitch D, Rickard W (2009) Dacite melt at the Puna Geothermal Venture well field, Big Island of Hawaii. Trans Geotherm Resour Council 33:989–994

    Google Scholar 

  77. Tomascak PB, Tera F, Helz R, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Google Scholar 

  78. Trinquier A, Elliott T, Ulfbeck D, Coath C, Krot AN, Bizzarro M (2009) Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324:374–376

    Google Scholar 

  79. Wallace PJ (1998) Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys Res Lett 25:3639–3642

    Google Scholar 

  80. Wang W, Huang S, Huang F, Zhao X, Wu Z (2020) Equilibrium inter-mineral titanium isotope fractionation: Implication for high-temperature titanium isotope geochemistry. Geochim Cosmochim Acta 269:540–553

    Google Scholar 

  81. Wang ZZ, Liu SA, Liu J, Huang J, Xiao Y, Chu ZY, Zhao XM, Tang L (2017a) Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth’s upper mantle. Geochim Cosmochim Acta 198:151–167

    Google Scholar 

  82. Wang W, Zhou C, Qin T, Kang JT, Huang S, Wu Z, Huang F (2017b) Effect of Ca content on equilibrium Ca isotope fractionation between orthopyroxene and clinopyroxene. Geochim Cosmochim Acta 219:44–56

    Google Scholar 

  83. Williams CD, Janney PE, Hines RR, Wadhwa M (2016) Precise titanium isotope compositions of refractory inclusions in the Allende CV3 chondrite by LA-MC-ICPMS. Chem Geol 436:1–10

    Google Scholar 

  84. Williams NH (2015) Titanium isotope cosmochemistry. Ph.D. thesis, Manchester University. https://www.escholar.manchester.ac.uk/uk-ac-man-scw:259269. Accessed 15 Feb 2015

  85. Xia Y, Li S, Huang F (2017) Iron and zinc isotope fractionation during magmatism in the continental crust: evidence from bimodal volcanic rocks from Hailar basin, NE China. Geochim Cosmochim Acta 213:35–46

    Google Scholar 

  86. Young ED, Manning CE, Schauble EA, Shahar A, Macris CA, Lazar C, Jordan M (2015) High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications. Chem Geol 395:176–195

    Google Scholar 

  87. Young ED, Tonui E, Manning CE, Schauble E, Macris CA (2009) Spinel–olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth Planet Sci Lett 288:524–533

    Google Scholar 

  88. Zhang H, Wang Y, He Y, Teng FZ, Jacobsen SB, Helz RT, Marsh BD, Huang S (2018) No measurable calcium isotopic fractionation during crystallization of Kilauea Iki Lava Lake. Geochem Geophys Geosyst 19:3128–3139

    Google Scholar 

  89. Zhang J, Dauphas N, Davis AM, Pourmand A (2011) A new method for MC-ICPMS measurement of titanium isotopic composition: identification of correlated isotope anomalies in meteorites. J Anal At Spectrom 26:2197–2205

    Google Scholar 

  90. Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A (2012) The proto-Earth as a significant source of lunar material. Nat Geosci 5:251–255

    Google Scholar 

  91. Zhang J, Huang S, Davis AM, Dauphas N, Hashimoto A, Jacobsen SB (2014) Calcium and titanium isotopic fractionations during evaporation. Geochim Cosmochim Acta 140:365–380

    Google Scholar 

  92. Zhu XK, Makishima A, Guo Y, Belshaw NS, O'Nions RK (2002) High precision measurement of titanium isotope ratios by plasma source mass spectrometry. Int J Mass Spectrom 220:21–29

    Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (41473005, 41973015, 41673021, 41688103 and 41873027) and the National Key R&D Program of China (2019YFA0708400). We thank Nicolas Dauphas for sharing the OL-Ti standard, Zhengbin Deng for sharing the IGPG-Ti standard, and Jian Huang and Fang Huang for providing several of the samples for this study. Shichun Huang, Wenzhong Wang and Dehong Du are thanked for discussion. We warmly thank the editor Timothy L. Grove and anonymous reviewers for their constructive comments and suggestions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xinmiao Zhao or Suohan Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1. Ti isotope results for spiked solutions of the Alfa Aesar Ti plasma standard doped with variable amounts of Ca relative to a pure spiked Aesar Ti plasma standard. Shaded area indicates the long-term reproducibility on undoped measurements of the Alfa Aesar Ti standard. Error bar denotes two standard deviations (2SD) (XLSX 123 kb)

Supplementary Fig. S2. Long-term external reproducibility of BCR-2 δ49/47Ti measurements (n=15). Each data point represents an independent measurement (from weighing the powder to isotopic analysis). The small error bars (purple) represent the standard deviation associated with instrumental instability. The large error bars (black) include an additional component of uncertainty to yield a MSWD of ~1 (σUnknown = 0.011, calculated following Dauphas et al. (2009)). The weighted average δ49/47Ti of BCR-2 is -0.15 ± 0.034‰ (2SD, 95 % c.i. = ± 0.011‰). The internal reproducibility (95% confidence interval) is defined as 2σData=2(σ2Mass Spec + σ2Unknown)0.5, where σ Mass Specis the standard deviation associated with instrumental instability, and σUnknownis an additional error arising from unaccounted analytical fractionation (Dauphas et al. 2009). The working estimates of σUnknownat the Laboratory of Isotopic Geology, Institute of Geology, Chinese Academy of Geological Sciences is 0.011‰ for δ49/47Ti based on repeated analysis of the basaltic reference material BCR-2 (from weighing the powder to isotopic analysis) over (over a period of ∼12 months) (XLSX 29 kb)

Supplementary Fig. S3. Plots of δ49/47Ti versus -ln(fTi) for four sets of well characterized lavas, Hekla lava and Afar hotspot (a), Agung lavas (c), Kilauea lavas (e), and Hailar lavas (g), respectively. The dashed color envelope represents the 95% c.i. for the regression in each panel which was calculated using Matlab. The correlation between instant Δ49/47Timineral-meltand SiO2 contents for the Hekla lava and Afar hotspot (b), Agung lavas (d), Kilauea lavas (f), and Hailar lavas (h), respectively. Error bars are 95% c.i. Symbols see Fig. 2 legend (XLSX 23 kb)

Supplementary file4 (XLSX 63 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Tang, S., Li, J. et al. Titanium isotopic fractionation during magmatic differentiation. Contrib Mineral Petrol 175, 67 (2020). https://doi.org/10.1007/s00410-020-01704-1

Download citation

  • Keywords
  • Ti isotopes
  • Mass dependent isotope fractionation
  • Magmatic differentiation
  • Igneous rocks