In situ XANES study of the influence of varying temperature and oxygen fugacity on iron oxidation state and coordination in a phonolitic melt

Abstract

Iron oxidation state and environment in magmas affect their phase diagram and their properties, including viscosity and density, which determine magma mobility and eruptive potential. In turn, magma composition, pressure, temperature and oxygen fugacity affect iron oxidation state and coordination, potentially leading to complex feedbacks associated with magma ascent, degassing and eruption. While equilibrium experiments and models have led to a deep understanding of the role of iron in melts, our knowledge of the effects of disequilibrium processes on iron oxidation state and its structural role in lavas and magmas remains limited. Accordingly, we performed a series of dynamic disequilibrium experiments on a natural melt composition (a phonolite lava from Erebus volcano, Antarctica) at atmospheric pressure, in which oxygen fugacity and temperature were controlled and varied. During the experiments, we continuously measured iron oxidation and coordination using Fe K-edge dispersive X-ray Absorption Spectroscopy (XAS). We found that iron oxidation state changes in the phonolite melt are reversible and well reproduced by existing models. Changes in iron oxidation state are driven by joint diffusion of alkali cations and oxygen anions at magmatic temperatures (~ 1000 °C for Erebus phonolite). However, redox diffusion timescales are too slow for any significant oxygen exchange with the atmosphere at the lava/air interface or via air entrainment. Turning to iron coordination, while Fe2+ and Fe3+ are present mostly in an average five-fold coordination, complex coordination variations decoupled from redox changes were detected. The data suggest transitions between Fe3+ in four-fold and six-fold coordination prior to reduction or as a consequence of oxidation. This questions the possible implication of Fe coordination changes in triggering crystallisation of magnetite nanolites upon magma ascent, and, through such crystallisation events, in promoting magma explosivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data are available in this manuscript and in Supplementary Materials. Raw data are available upon request to the corresponding author.

References

  1. Alderman OLG, Wilding MC, Tamalonis A et al (2017) Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses. Chem Geol 453:169–185

    Article  Google Scholar 

  2. Aster R, Mah S, Kyle P et al (2003) Very long period oscillations of Mount Erebus Volcano. J Geophys Res 108:2522

    Article  Google Scholar 

  3. Baker LL, Rutherford MJ (1996) Sulfur diffusion in rhyolite melts. Contrib Mineral Petrol 123:335–344

    Article  Google Scholar 

  4. Behrens H, Stelling J (2011) Diffusion and redox reactions of sulfur in silicate melts. Rev Mineral Geochem 73:79–111

    Article  Google Scholar 

  5. Berry AJ, O’Neill HSC, Jayasuriya KD, Campbell SJ, Foran GJ (2003) XANES calibrations for the oxidation state of iron in a silicate glass. Am Mineral 88:967–977

    Article  Google Scholar 

  6. Berry AJ, Stewart GA, O’Neill HSC, Mallmann G, Mosselmans JFW (2018) A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet Sc Lett 483:114–123

    Article  Google Scholar 

  7. Bidegaray A-I, Ceglia A, Cicconi MR et al (2018) An in-situ XANES investigation of the interactions between iron, manganese and antimony in silicate melts. J Non-Cryst Solids 502:227–235

    Article  Google Scholar 

  8. Borisov A, Behrens H, Holtz F (2018) Ferric/ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition. Contrib Mineral Petrol 173:98

    Article  Google Scholar 

  9. Burgisser A, Oppenheimer C, Alletti M et al (2012) Backward tracking of gas chemistry measurements at Erebus volcano. Geochem Geophys Geosyst. https://doi.org/10.1029/2012GC004243

    Article  Google Scholar 

  10. Calkins J, Oppenheimer C, Kyle PR (2008) Ground-based thermal imaging of lava lakes at Erebus volcano, Antarctica. J Volcanol Geoth Res 177:695–704

    Article  Google Scholar 

  11. Chevrel MO, Giordano D, Potuzak M et al (2013) Physical properties of CaAl2Si2O8–CaMgSi2O6–FeO–Fe2O3 melts: analogues for extra-terrestrial basalt. Chem Geol 346:93–105

    Article  Google Scholar 

  12. Chevrel MO, Baratoux D, Hess K-U, Dingwell DB (2014) Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts. Geochim Cosmochim Acta 124:348–365

    Article  Google Scholar 

  13. Cicconi MR, Giuli G, Ertel-Ingrisch W et al (2015a) The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses. Am Mineral 100:1610–1619

    Article  Google Scholar 

  14. Cicconi MR, Neuville DR, Tannou I et al (2015b) Competition between two redox states in silicate melts: An in-situ experiment at the Fe K-edge and Eu L3-edge. Am Mineral 100:1013–1016

    Article  Google Scholar 

  15. Cicconi MR, Moretti R, Neuville DR (2020) Earth’s electrodes. Elements

  16. Cochain B (2009) Cinétique et mécanismes d’oxydoréduction dans les silicates fondus (Ph.D.). Pierre et Marie Curie-Paris VI, Paris

  17. Cochain B, Neuville DR, de Ligny D, Roux J, Baudelet F, Strukelj E, Richet P (2009) Kinetics of iron redox reaction in silicate melts: a high temperature Xanes study on an alkali basalt. J Phys Conf Ser 190:012182

    Article  Google Scholar 

  18. Cochain B, Neuville DR, de Ligny D, Malki M, Testemale D, Pinet O, Richet P (2013) Dynamics of iron-bearing borosilicate melts: effects of melt structure and composition on viscosity, electrical conductivity and kinetics of redox reactions. J Non-Cryst Solids 373–374:18–27

    Article  Google Scholar 

  19. Cooney TF, Sharma SK (1990) Structure of glasses in the systems Mg2SiO4–Fe2SiO4, Mn2SiO4–Fe2SiO4, Mg2SiO4–CaMgSiO4, and Mn2SiO4–CaMnSiO4. J Non-Cryst Solids 122:10–32

    Article  Google Scholar 

  20. Cooper RF, Fanselow JB, Poker DB (1996a) The mechanism of oxidation of a basaltic glass: chemical diffusion of network-modifying cations. Geochim Cosmoch Acta 60:3253–3265

    Article  Google Scholar 

  21. Cooper RF, Fanselow JB, Weber JKR, Merkley DR, Poker DB (1996b) Dynamics of oxidation of a Fe2+-bearing aluminosilicate (basaltic) melt. Science 274:1173–1176

    Article  Google Scholar 

  22. Cottrell E, Kelley KA, Lanzirotti A, Fischer RA (2009) High-precision determination of iron oxidation state in silicate glasses using XANES. Chem Geol 268:167–179

    Article  Google Scholar 

  23. Cottrell E, Lanzirotti A, Mysen BO et al (2018) A Mössbauer-based XANES calibration for hydrous basalt glasses reveals radiation-induced oxidation of Fe. Am Mineral 103:489–501

    Article  Google Scholar 

  24. Di Genova D, Kolzenburg S, Wiesmaier S et al (2017) A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. Nature 552:235–238

    Article  Google Scholar 

  25. Dingwell DB (1991) Redox viscometry of some Fe-bearing silicate melts. Am Mineral 76:1560–1562

    Google Scholar 

  26. Dingwell DB, Virgo D (1987) The effet of oxydation state on the viscosity of melts in the system Na2O-FeO-Fe2O3-SiO2. Geochimica et Cosmochimica Acta 51:195–205

    Article  Google Scholar 

  27. Dingwell DB, Virgo D (1988) Viscosities of melts in the Na2O–FeO–Fe2O3–SiO2 system and factors controlling relative viscosities of fully polymerized silicate melts. Geochim Cosmoch Acta 52:395–403

    Article  Google Scholar 

  28. Drewitt JWE, Sanloup C, Bytchkov A, Brassamin S, Hennet L (2013) Structure of (FexCa1−xO)y(SiO2)1−y liquids and glasses from high-energy X-ray diffraction: implications for the structure of natural basaltic magmas. Phys Rev B Condens Matter Mater Phys 87(22):1–10

    Article  Google Scholar 

  29. Fiege A, Ruprecht P, Simon AC, Bell AS, Göttlicher J, Newville M, Lanzirotti T, Moore G (2017) Calibration of Fe XANES for high-precision determination of Fe oxidation state in glasses: comparison of new and existing results obtained at different synchrotron radiation sources. Am Mineral 102(2):369–380

    Article  Google Scholar 

  30. Fincham CJB, Richardson FD (1954) The behaviour of sulphur in silicate and aluminate melts. P Roy Soc A Math Phys 223:40–62

    Google Scholar 

  31. Flood H, Förland T (1947) The acidic and basic properties of oxides. Acta Chem Scand 1:592–604

    Article  Google Scholar 

  32. Fox KE, Furukawa T, White WB (1982) Transition metal ions in silicate melts. Part 2. Iron in sodium silicate glasses. Phys Chem Glasses 23:169–178

    Google Scholar 

  33. Fraser DG (1975) Activities of trace elements in silicate melts. Geochim Cosmoch Acta 39:1525–1530

    Article  Google Scholar 

  34. Galoisy L, Calas G, Arrio MA (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174:307–319

    Article  Google Scholar 

  35. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2–3):197–212

    Article  Google Scholar 

  36. Giuli G, Alonso-Mori R, Cicconi MR et al (2012) Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses. Am Mineral 97:468–475

    Article  Google Scholar 

  37. Goldman DS, Gupta PK (1983) Diffusion-controlled redox kinetics in a glassmelt. J Am Ceram Soc 66:188–190

    Article  Google Scholar 

  38. Gonçalves Ferreira P, de Ligny D, Lazzari O et al (2013) Photoreduction of iron by a synchrotron X-ray beam in low iron content soda-lime silicate glasses. Chem Geol 346:106–112

    Article  Google Scholar 

  39. Gonnermann HM (2015) Magma fragmentation. Annu Rev Earth Planet Sci 43:431–458

    Article  Google Scholar 

  40. Gonnermann HM, Manga M (2013) Dynamics of magma ascent in the volcanic conduit. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, pp 55–84. https://doi.org/10.1017/CBO9781139021562.004

  41. Iacovino K, Oppenheimer C, Scaillet B, Kyle P (2016) Storage and evolution of mafic and intermediate alkaline magmas beneath Ross Island. Antarct J Petrol 57(1):93–118

    Article  Google Scholar 

  42. Jambon A (1982) Tracer diffusion in granitic melts: experimental results for Na, K, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1300 °C and a model of calculation. J Geophys Res 87:10797–10810

    Article  Google Scholar 

  43. Jayasurika KD, O’Neill HSTC, Berry AJ, Campbell SJ (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89:1597–1609

    Article  Google Scholar 

  44. Jørgensen CK (1969) Oxidation numbers and oxidation states. Springer-Verlag, Berlin

    Google Scholar 

  45. Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The Ferric-Ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83:136–140

    Article  Google Scholar 

  46. Kress VC, Carmichael IS (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  47. Kyle PR, Moore JA, Thirlwall MF (1992) Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island. Antarct J Petrol 33(4):849–875

    Article  Google Scholar 

  48. Le Losq C, Neuville DR (2017) Molecular structure, configurational entropy and viscosity of silicate melts: link through the Adam and Gibbs theory of viscous flow. J Non-Cryst Solids 463:175–188

    Article  Google Scholar 

  49. Le Losq C, Neuville DR, Moretti R, Kyle PR, Oppenheimer C (2015) Rheology of phonolitic magmas—the case of the Erebus lava lake. Earth Planet Sc Lett 411:53–61

    Article  Google Scholar 

  50. Le Losq C, Berry AJ, Kendrick MA, Neuville DR, O’Neill HSTC (2019) Determination of the oxidation state of iron in Mid-Ocean Ridge basalt glasses by Raman spectroscopy. Am Mineral 104:1032–1049

    Article  Google Scholar 

  51. Le Losq C, Cicconi MR, Neuville D (2020) Iron in silicate glasses and melts: implications for volcanological processes. In: Moretti R, Neuville DR (eds) Magma redox geochemistry. AGU geophysical monograph. https://doi.org/10.1002/essoar.10503261.1

  52. Lierenfeld MB, Zajacz Z, Bachmann O, Ulmer P (2018) Sulfur diffusion in dacitic melt at various oxidation states: implications for volcanic degassing. Geochim Cosmoch Acta 226:50–68

    Article  Google Scholar 

  53. Magnien V, Neuville DR, Cormier L, Mysen BO, Briois V, Belin S, Pinet O, Richet P (2004) Kinetics of iron oxidation in silicate melts: a preliminary XANES study. Chem Geol 213:253–263

    Article  Google Scholar 

  54. Magnien V, Neuville DR, Cormier L et al (2006) Kinetics of iron redox reactions in silicate liquids: a high-temperature X-ray absorption and Raman spectroscopy study. J Nucl Mater 352:190–195

    Article  Google Scholar 

  55. Magnien V, Neuville DR, Cormier L, Roux J, Hazemann J-L, de Ligny D, Pascarelli S, Vickridge I, Pinet O, Richet P (2008) Kinetics and mechanisms of iron redox reactions in silicate melts: the effects of temperature and alkali cations. Geochim Cosmoch Acta 72:2157–2168

    Article  Google Scholar 

  56. Métrich N, Susini J, Foy E et al (2006) Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro-spectroscopy experiments at high temperature. Chem Geol 231:350–363

    Article  Google Scholar 

  57. Moretti R (2005) Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts. Ann Geophys 48(4/5):583–608. https://doi.org/10.4401/ag-3221

    Article  Google Scholar 

  58. Moretti R (2020) Ionic syntax and equilibrium approach to redox exchanges in melts: basic concepts and the case of iron and sulfur in degassing magmas. In: Moretti R, Neuville DR (eds) Magma redox geochemistry, AGU geophysical monograph

  59. Moretti R, Ottonello G (2005) Solubility and speciation of sulfur in silicate melts: the Conjugated Toop-Samis-Flood-Grjotheim (CTSFG) model. Geochim Cosmoch Acta 69:801–823

    Article  Google Scholar 

  60. Moussallam Y, Oppenheimer C, Scaillet B, Kyle P (2013) Experimental phase equilibrium constraints on the phonolite magmatic system of Erebus volcano, Antarctica. J Petrol 54:1285–1307

    Article  Google Scholar 

  61. Moussallam Y, Oppenheimer C, Scaillet B, Gaillard F, Kyle P, Peters N, Hartley M, Berlo K, Donovan A (2014) Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth Planet Sc Lett 393:200–209

    Article  Google Scholar 

  62. Mysen BO, Frantz JD (1992) Raman spectroscopy of silicate melts at magmatic temperatures: Na2O–SiO2, K2O–SiO2 and Li2O–SiO2 binary compositions in the temperature range 25–1475 °C. Chem Geol 96:321–332

    Article  Google Scholar 

  63. Mysen BO, Virgo D, Neumann E-R, Seifert FA (1985) Redox equilibria and the structural states of ferric and ferrous iron in melts in the system CaO–MgO–Al2O3–SiO2–Fe–O: relationships between redox equilibria, melt structure and liquidus phase equilibria. Am Mineral 70:317–331

    Google Scholar 

  64. Nesbitt HW, Bancroft GM, Henderson GS, Sawyer R, Secco RA (2015) Direct and indirect evidence for free oxygen (O2−) in MO-silicate glasses and melts (M = Mg, Ca, Pb). Am Mineral 100:2566–2578

    Article  Google Scholar 

  65. Neuville DR, Hennet L, Florian P, De Ligny D (2014) In situ high-temperature experiments. Rev Mineral Geochem 78:779–800

    Article  Google Scholar 

  66. O’Neill HSTC, Berry AJ, McCammon CC et al (2006) An experimental determination of the effect of pressure on the Fe3+/ΣFe ratio of an anhydrous silicate melt to 3.0 GPa. Am Mineral 91:404–412

    Article  Google Scholar 

  67. O’Neill HSTC, Berry AJ, Mallmann G (2018) The oxidation state of iron in Mid-Ocean Ridge basaltic (MORB) glasses: implications for their petrogenesis and oxygen fugacities. Earth Planet Sci Lett 504:152–162

    Article  Google Scholar 

  68. Oppenheimer C, Kyle PR (2008) Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J Volcanol Geoth Res 177:743–754

    Article  Google Scholar 

  69. Oppenheimer C, Lomakina AS, Kyle PR et al (2009) Pulsatory magma supply to a phonolite lava lake. Earth Planet Sci Lett 284:392–398

    Article  Google Scholar 

  70. Oppenheimer C, Moretti R, Kyle PR et al (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet Sci Lett 306:261–271

    Article  Google Scholar 

  71. Ottonello G, Moretti R, Marini L, Vetuschi Zuccolini M (2001) Oxidation state of iron in silicate glasses and melts: a thermochemical model. Chem Geol 174:157–179

    Article  Google Scholar 

  72. Paul A, Douglas RW (1965) Ferrous-ferric equilibrium in binary alkali silicate glasses. Phys Chem Glasses 6:207

    Google Scholar 

  73. Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  74. Peters NJ, Oppenheimer C, Brennan P, Lok LB, Ash M, Kyle P (2018) Radar altimetry as a robust tool for monitoring the active lava lake at Erebus volcano. Antarct Geophys Res Lett 45(17):8897–8904

    Article  Google Scholar 

  75. Sack RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferric-Ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376

    Article  Google Scholar 

  76. Sanloup C, Drewitt JWE, Crépisson C et al (2013) Structure and density of molten fayalite at high pressure. Geochim Cosmochim Acta 118:118–128

    Article  Google Scholar 

  77. Schreiber HD (1986) Redox processes in glass-forming melts. J Non-Cryst Solids 84:129–141

    Article  Google Scholar 

  78. Schuessler JA, Botcharnikov RE, Behrens H et al (2008) Amorphous Materials: properties, structure, and durability: oxidation state of iron in hydrous phono-tephritic melts. Am Mineral 93:1493–1504

    Article  Google Scholar 

  79. Stabile P, Giuli G, Cicconi MR et al (2017) The effect of oxygen fugacity and Na/(Na+K) ratio on iron speciation in pantelleritic glasses. J Non-Cryst Solids 478:65–74. https://doi.org/10.1016/j.jnoncrysol.2017.09.051

    Article  Google Scholar 

  80. Toop GW, Samis CS (1962) Activities of ions in silicate melts. Trans Metall AIME 224:878–887

    Google Scholar 

  81. Wang Z, Cooney TF, Sharma SK (1995) In situ structural investigation of iron-containing silicate liquids and glasses. Geochim Cosmoch Acta 59:1571–1577

    Article  Google Scholar 

  82. Wilke M, Farges F, Petit P-E et al (2001) Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study. Am Mineral 86:714–730

    Article  Google Scholar 

  83. Wilke M, Partzsch GM, Bernhardt R, Lattard D (2004) Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge. Chem Geol 213:71–87

    Article  Google Scholar 

  84. Wilke M, Farges F, Partzsch GM, Schmidt C, Behrens H (2007a) Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy. Am Mineral 92:44–56

    Article  Google Scholar 

  85. Wilke M, Partzsch GM, Welter E, Farges F (2007b) Redox reaction in silicate melts monitored by “static” in-situ Fe K-Edge XANES up to 1180 °C. AIP Conf Proc 882:293–295

    Article  Google Scholar 

  86. Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72:311–408

    Article  Google Scholar 

  87. Zhang HL, Hirschmann MM, Cottrell E, Withers AC (2017) Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochim Cosmoch Acta 204:83–103

    Article  Google Scholar 

  88. Zhang HL, Cottrell E, Solheid PA, Kelley KA, Hirschmann MM (2018) Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chem Geol 479:166–175

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dominique de Ligny and Yves Moussallam for assistance with XANES experiments. We also thank Hans Keppler, Margaret Hartley and two anonymous referees for their constructive comments that led to significant improvements of the manuscript.

Funding

We acknowledge SOLEIL (Gif sur Yvette, France) for provision of synchrotron radiation facilities (proposal 20101038). CLL acknowledges support received from the Australian Research Council Laureate Fellowship (FL130100066) of Hugh St. C. O’Neill as well as from the Chaire d’Excellence of the University of Paris during data processing and manuscript preparation. CO acknowledges support from the Natural Environment Research Council (Grant NE/N009312/1).

Author information

Affiliations

Authors

Contributions

CO collected the samples for analysis. CLL, RM, CO and DN designed the study. CLL, RM, FB and DN performed the XANES experiments. CLL processed the data and drafted the manuscript. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Charles Le Losq.

Ethics declarations

Conflict of interest

All Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Hans Keppler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Losq, C., Moretti, R., Oppenheimer, C. et al. In situ XANES study of the influence of varying temperature and oxygen fugacity on iron oxidation state and coordination in a phonolitic melt. Contrib Mineral Petrol 175, 64 (2020). https://doi.org/10.1007/s00410-020-01701-4

Download citation

Keywords

  • Magmas
  • Iron
  • Oxidation state
  • Coordination
  • XANES spectroscopy
  • Volcano