U–Pb geochronology of apatite and zircon from the Brent impact structure, Canada: a Late Ordovician Sandbian–Katian boundary event associated with L-Chondrite parent body disruption

Abstract

In situ LA-ICP-MS U–Pb geochronology has been performed on apatite and zircon within thermally recrystallized clast-laden and clast-poor impact melt rocks from the Brent impact structure. A total of 377 laser analyses on 120 impact melt-grown (n = 9) and impact-recrystallized zircon grains (n = 111) were obtained, from which a concordia age of 452.8 ± 2.7 Ma (MSWD 0.57, n = 11), and a weighted average mean 206Pb/238U age of 453.2 ± 2.9 Ma (MSWD 0.60) (n = 11) are calculated. A total of 300 laser analyses from 100 relict apatite grains were obtained, with an unanchored regression through all data yielding a lower intercept age of 453.2 ± 6.0 Ma (MSWD 5.8, n = 300), that overlaps within error of zircon. 207Pb/206Pb ratios obtained from feldspar clasts within clast-laden impact melt retain the same initial Pb composition as the target rocks from which they are derived, while feldspars that crystallized from impact melt have 207Pb/206Pb ratios indicative of isotopic re-equilibration between basement lithologies of two different ages. A similar variability in 207Pb/206Pb is recorded by apatite. This provides evidence for the involvement of Neoproterozoic Lake Nipissing alkaline suite, as well as Mesoproterozoic Grenville gneisses in the production of impact melt at Brent. Recrystallized apatite grains exhibit enrichments in light rare earth elements (LREEs) along neoblast grain boundaries, indicative of trace element substitution and phase precipitation during impact-induced recrystallization. An age of 452.8 ± 2.7 Ma from zircon and 453.2 ± 6.0 Ma from apatite places the impact event in the Late Ordovician, at or near the Sandbian–Katian boundary, confirming Brent’s involvement in the Middle to Late Ordovician crater cluster event—a period of enhanced impactor flux to Earth related to the L-Chondrite parent body disruption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alwmark C, Ferrière L, Holm-Alwmark S, Ormö SJ, Leroux H, Sturkell E (2015) Impact origin for the Hummeln structure (Sweden) and its link to the Ordovician disruption of the L chondrite parent body. Geology 43:279–282

    Article  Google Scholar 

  2. Bergström SM, Schmitz B, Liu HP, Terfelt F, McKay RM (2018) High resolution δ13C core chemostratigraphy links the Decorah impact structure and the Winneshiek Konservat-Lagerstatte to the Darriwilian global influx of meteorites. Lethaia 51:504–512

    Article  Google Scholar 

  3. Bleeker W, Dix GR, Davidson A, LeCheminant A (2011) Tectonic evolution and sedimentary record of the Ottawa-Bonnechere Graben: Examining the Precambrian and Phanerozoic history of magmatic activity, Faulting and sedimentation. GACMAC 2011 Field Trip Guidebook

  4. Bottomley RJ, York D, Grieve RAF (1990) 40Argon–39Argon dating of impact craters. Proc Lunar Planet Sci Conf 20:421–431

    Google Scholar 

  5. Chew DM, Petrus JA, Kamber BS (2014) U-Pb LA-ICP-MS dating using accessory mineral standards with variable common Pb. Chem Geol 363:185–199

    Article  Google Scholar 

  6. Cooper RA, Sadler PM, Hammer O, Gradstein FM (2012) The Ordovician period. In: Gradstein FM, Ogg JG (eds) The geologic time scale, vol 2. Schmitz MD, Ogg GM), pp 489–523

    Google Scholar 

  7. Connelly JN, Bollard J, Bizzarro M (2017) Pb-Pb chronometry and the early Solar System. Geochim Cosmochim Acta 201:345–363

    Article  Google Scholar 

  8. Cullers RL, Medaris G (1977) Rare earth elements in carbonatite and cogenetic alkaline rocks: examples from Seabrook Lake and Callander Bay, Ontario. Contrib Mineral Petrol 65:143–153

    Article  Google Scholar 

  9. Currie KL (1971) A study of potash fenitization around the Brent Crater, Ontario—a Paleozoic alkaline complex. Can Jour Earth Sci 8:481–497

    Article  Google Scholar 

  10. Erickson TM, Timms NE, Kirkland CL, Tohver E, Cavosie AJ, Pearce MA, Reddy SM (2017) Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages. Contrib Mineral Petrol 172:11

    Article  Google Scholar 

  11. Dence MR (1964) A comparative structural and petrographic study of probable Canadian meteorite craters. Meteoritics 2:249–270

    Article  Google Scholar 

  12. Dence MR (1965) The extraterrestrial origin of Canadian craters. Annals New York Acad Sciences 123:941–969

    Article  Google Scholar 

  13. Dence MR (1968) Shock zoning at Canadian craters: petrography and structural implications. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corporation, Baltimore, pp 169–184

    Google Scholar 

  14. Dence MR (1971) Impact melts. J Geophys Res 76:5552–5565

    Article  Google Scholar 

  15. Dence MR (2017) On critical observations that constrain models of terrestrial hypervelocity impact craters. Meteorit Plan Sci 52:1285–1299

    Article  Google Scholar 

  16. Dickin AP, Strong JWD (2019) Nd isotope mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, Canada. Can J Earth Sci 56:101–110

    Article  Google Scholar 

  17. Earth Impact Database. http://www.passc.net/EarthImpactDatabase. Accessed Feb 2020

  18. French BM, McKay RM, Liu HP, Briggs DEG, Witzke BJ (2018) The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact. Bull Geol Soc Am 130:11–12

    Article  Google Scholar 

  19. Goderis S, Vleminckx B, Paquay FS, Chackrabarti V, Renson V, Debaille W, Sluyts F, Vanhaecke F, Spray JG, Jacobsen SB, Claeys P (2010) The geochemistry of the Brent impact structure, Ontario. In: Goldschmidt Conf Abstr A340

  20. Grahn Y, Ormö J (1995) Microfossil dating of the Brent meteorite crater, southeast Ontario, Canada. Rev Micropaleo 38:131–137

    Google Scholar 

  21. Grahn Y, Nõlvak J, Paris F (1996) Precise chitinozoan dating of Ordovician impact events in Baltoscandia. J Micropaleo 15:21–35

    Article  Google Scholar 

  22. Grieve RAF (1978) The melt rocks at Brent crater, Ontario, Canada. Proc Lunar Plan Sci Conf 9:2579–2608

    Google Scholar 

  23. Harlov AE, Wirth R, Förster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  24. Harlov AE, Andersson UB, Förster HJ, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kirrunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  25. Hartung JB, Dence MR, Adams JAS (1971) Potassium-Argon dating of shock metamorphosed rocks from the Brent impact crater, Ontario, Canada. J Geophys Res 76:5437–5448

    Article  Google Scholar 

  26. Hauser N, Reimold WU, Cavosie AJ, Crόsta AP, Schwarz WH, Trieloff M, Da Silva Maia De Souza C, Pereira LA, Rodreigues E, Brown M (2019) Linking shock textures revealed by BSE, CL and EBSD with U-Pb data (LA-ICP-MS and SIMS) from zircon from the Araguainha impact structure, Brazil. Meteorit Planet Sci 54:2286–2311

    Article  Google Scholar 

  27. Heaman LM (2008) The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem Geol 261:43–52

    Article  Google Scholar 

  28. Hodych JO, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20:51–54

    Article  Google Scholar 

  29. Horstwood MSA (2008) Data reduction strategies, uncertainty assessment, and resolution of LA-(MC-)ICP-MS isotope data. Min Assoc Canada Short Course 40:283–303

    Google Scholar 

  30. Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170

    Article  Google Scholar 

  31. Innes MJS (1964) Recent advances in meteorite crater research at the Dominion Observatory, Ottawa, Canada. Meteoritics 2:219–242

    Article  Google Scholar 

  32. Kamo SL, Krogh TE, Kumarapeli PS (1995) Age of the Grenville dyke swarm, Ontario-Quebec: implications for the timing of Iapetus rifting. Can J Earth Sci 32:273–280

    Article  Google Scholar 

  33. Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report on shock metamorphosed zircons in pseudotachylitic breccias and Granophyre. Earth Planet Sci Lett 144:369–387

    Article  Google Scholar 

  34. Kamo SL, Lana C, Morgan JV (2011) U-Pb ages of shocked zircon grains link distal K-Pg boundary sites in Spain and Italy with the Chicxulub impact. Earth Planet Sci Lett 310:401–408

    Article  Google Scholar 

  35. Kay GM (1942) Ottawa-Bonnechere Graben and Lake Ontario homocline. Bull Geol Soc Am 53:585–646

    Article  Google Scholar 

  36. Kenny GG, Morales LF, Whitehouse MJ, Petrus JA, Kamber BS (2018) The formation of large neoblasts in shocked zircon and their utility in dating impacts. Geol Soc Am 45:1003–1006

    Google Scholar 

  37. Kenny GG, Karlsson A, Schmieder M, Whitehouse MJ, Nemchin AA, Bellucci JJ (2020) Recrystallization and chemical changes in apatite in response to hypervelocity impact. Geology 48:19–23

    Article  Google Scholar 

  38. Korochantseva EV, Trieloff M, Lorenz CA, Buykin AI, Ivanova MA, Schwarz WH, Hopp J, Jessberger EK (2007) L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar–39Ar dating. Meteorit Planet Sci 42:113–130

    Article  Google Scholar 

  39. Kramers JD, Tolstikhin IN (1997) Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem Geol 139:75–110

    Article  Google Scholar 

  40. Lindskog A, Costa MM, Rasmussen CMO, Connelly JN, Eriksson ME (2017) Refined Ordovician timescale reveals no link between asteroid breakup and biodiversification. Nature 8:1–8

    Google Scholar 

  41. Lozej GP, Beales FW (1975) The unmetamorphosed sedimentary fill of the Brent meteorite crater, southeastern Ontario. Can J Earth Sci 12:606–628

    Article  Google Scholar 

  42. McFarlane CR, Luo Y (2012) U-Pb Geochronology using 193 nm Excimer LA-ICP-MS optimized for in situ accessory mineral dating in thin sections. Mod Anal Fac 39:158–172

    Google Scholar 

  43. McGregor M, McFarlane CRM, Spray JG (2018) In situ LA-ICP-MS apatite and zircon U-Pb geochronology of the Nicholson Lake impact structure, Canada: shock and related thermal effects. Earth Planet Sci Lett 504:185–197

    Article  Google Scholar 

  44. McGregor M, McFarlane CRM, Spray JG (2019a) Multiphase U-Pb geochronology and shock analysis of apatite, titanite, and zircon from the Lac La Moinerie impact structure. Canada Contrib Mineral Petrol 174:62

    Article  Google Scholar 

  45. McGregor M, Erickson TM, Spray JG (2019b) Recrystallization and micro-twinning in apatite and titanite from the Lac La Moinerie impact structure, Canada: implications for U–Pb impact chronology. Large Meteor Impacts IV Abst #5099

  46. McGregor M, Walton EL, McFarlane CRM, Spray JG (2020) Multiphase U–Pb geochronology of sintered breccias from the Steen River impact structure, Canada: mixed target considerations for a Jurassic-Cretaceous boundary event. Geochim Cosmochim Acta 274:136–156

    Article  Google Scholar 

  47. Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520

    Article  Google Scholar 

  48. Millman PM, Liberty BA, Clark JF, Willmore PL, Willmore, Innes MJS (1960) The Brent Crater. Dominion Observatory Pub., Ottawa 24, 43 p

  49. Milstein RL (1988) Impact origin of the Calvin cryptoexplosive disturbance, Cass County, Michigan. Michigan Dept Nat Res Geol Surv Div Rep Investig 28:1–33

    Google Scholar 

  50. Monson CL, Sweet D, Segvic B, Zanoni G, Balling K, Wittmer JM, Ganis R, Cheng G (2019) The Late Ordovician (Sandbian) Glasford structure: a marine-target impact crater with a possible connection to the Ordovician meteorite event. Meteorit Planet Sci 54:2927–2950

    Article  Google Scholar 

  51. Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart JR (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U-Pb and (U–Th)/He analysis of the Vredefort dome. Can J Earth Sci 48:117–139

    Article  Google Scholar 

  52. O’Connell-Cooper CD, Dickin AP, Spray JG (2012) The Manicouagan impact melt sheet: evidence for isotopic homogenization with limited assimilation. Earth Planet Sci Lett 335–336:48–58

    Article  Google Scholar 

  53. Onorato PIK, Uhlmann DR, Simonds CH (1978) The thermal history of the Manicouagan impact melt sheet, Quebec. J Geophys Res 83:2789–2798

    Article  Google Scholar 

  54. Ormö J, Sturkell E, Alwmark C, Melosh J (2014) First known terrestrial impact of a binary asteroid from a main belt breakup event. Sci Rep 4:6724

    Article  Google Scholar 

  55. Paces JB, Miller JD (1993) Precise U-Pb ages of Duluth Complex and related mafic intrusions, Northeastern Minnesota—geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98:13997–14013

    Article  Google Scholar 

  56. Palme H, Grieve RAF, Wolf R (1981) Identification of the projectile at the Brent crater and further considerations of projectile types at terrestrial craters. Geochim Cosmochim Acta 45:2417–2424

    Article  Google Scholar 

  57. Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49

    Article  Google Scholar 

  58. Papapavlou K, Darling JR, Moser DE, Barker IR, White LF, Lightfoot PC, Storey CD, Dunlop J (2018) U-Pb isotopic dating of titanite microstructures: potential implications for the chronology and identification of large impact structures. Contrib Min Pet 173:1–15

    Article  Google Scholar 

  59. Paton C, Hellstrom J, Paul JW, Hergt J (2011) Iolite: freeware for the visualization and processing of mass spectrometric data. J Analyt Atom Spectrom 26:2508–2518

    Article  Google Scholar 

  60. Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP–MS U-Pb geochronology data reduction. Geostand Geoanalyt Res 36:247–270

    Article  Google Scholar 

  61. Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527

    Article  Google Scholar 

  62. Putnis A (2009) Mineral replacement reactions. In: Oelkers EH, Schott J. (Eds), Thermodynamics and kinetics of water–rock interaction. Rev Mineral Geochem 30:87–124

  63. Rasmussen CMØ, Ullmann CV, Jakobsen KG, Lindskog A, Hansen J, Hansen T, Eriksson ME, Dronov A, Frei R, Korte C, Nielsen AT, Harper DAT (2016) Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Sci Rep 6:18884

    Article  Google Scholar 

  64. Rivers T (2015) Tectonic setting and evolution of the Grenville Orogen: an assessment of progress over the last 40 years. Geosci Can 42:77–124

    Article  Google Scholar 

  65. Schmieder M, Tohver E, Jourdan F, Denyszyn SW, Haines PW (2015) Zircons from the Acraman impact melt rock (South Australia): shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochim Cosmochim Acta 161:71–100

    Article  Google Scholar 

  66. Schmieder M, Shaulis BJ, Lapen TJ, Buchner E, Kring DA (2019) In situ U-Pb analysis of shocked zircon from the Charlevoix impact structure, Québec, Canada. Meteorit Planet Sci 54:1808–1827

    Article  Google Scholar 

  67. Schmitz B (2013) Extraterrestrial spinels and the astronomical perspective on earths geological record and evolution of life. Geochem 73:49–53

    Article  Google Scholar 

  68. Schmitz B, Farley KA, Goderis S, Heck PR, Bergström SM, Boschi S, Claeys P, Debaille V, Dronov A, Van Ginneken M, Harper DA (2019) An extraterrestrial trigger for the mid-Ordovician ice age: dust from the breakup of the l-chondrite parent body. Science Advances 5:1–10

    Article  Google Scholar 

  69. Schmitz B, Harper DT, Peucker-Ehrenbrink B, Stouge S, Alwmark C, Cronholm A, Bergström SM, Tassinari M, Xiaofeng W (2008) Asteroid breakup linked to the Great Ordovician biodiversification event. Nat Geosci 1:49–53

    Article  Google Scholar 

  70. Scoates JS, Chamberlain KR (2002) Geochronolic, geochemical and isotopic constrains on the origin of monzonitic and related rocks in the Laramie anorthosite complex, Wyoming, USA. Precam Res 124:269–304

    Article  Google Scholar 

  71. Seifert W, Thomas R, Rhede D, Förster HJ (2010) Origin of coexisting wüstite, Mg-Fe and REE phosphate minerals in graphite-bearing fluorapatite from the Rumburk granite. Euro J Mineral 22:495–507

    Article  Google Scholar 

  72. Servais T, Harper DAT (2018) The Great Ordovician Biodiversification Event (GOBE): definition, concept and duration. Lethaia 51:151–164

    Article  Google Scholar 

  73. Shafiqullah M, Tupper WM, Cole TJS (1968) K-Ar ages on rocks from the crater at Brent, Ontario. Earth Planet Sci Lett 5:148–152

    Article  Google Scholar 

  74. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  75. Spear FS, Pyle JM (2000) Apatite, monazite, and xenotime in metamorphic rocks. Rev Mineral Geochem 48:293–335

    Article  Google Scholar 

  76. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  77. Steiger RH, Jäger E (1977) Submission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  78. Thomson SN, Gehrels GE, Ruiz J (2012) Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS. Geochem Geophys Geosyst 13:1–23

    Article  Google Scholar 

  79. Timms NE, Erickson TM, Pearce MA, Cavosie AJ, Schmieder M, Tohver E, Reddy SM, Zanetti MR, Nemchin AA, Wittmann A (2017) A pressure–temperature phase diagram for zircon at extreme conditions. Earth Sci Rev 165:185–202

    Article  Google Scholar 

  80. Trotter JA, Williams IS, Barnes CR, Lécuyer C, Nicoll RS (2008) Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550–554

    Article  Google Scholar 

  81. Walton EL, Hughes A, MacLagan EA, Herd CDK, Dence MR (2017) A previously unrecognized high-temperature impactite from the Steen River impact structure, Alberta, Canada. Geology 45:291–294

    Article  Google Scholar 

  82. Walton EL, Timms NE, Hauck TE, MacLagan EA, Herd CDK (2019) Evidence of impact melting and post-impact decomposition of sedimentary target rocks from the Steen River impact structure, Alberta, Canada. Earth Planet Sci Lett 515:173–186

    Article  Google Scholar 

  83. Watson EB, Green TH (1981) Apatite/liquid partition coefficients for rare earth elements and strontium. Earth Plan Sci Lett 56:405–421

    Article  Google Scholar 

  84. Webby BD, Paris F, Droser ML, Percival IC (2004) The Great Ordovician Biodiversification Event. Columbia University Press, New York, NY, p 496

    Google Scholar 

  85. Wittmann A, Kenkmann T, Schmitt RT, Stöffler D (2006) Shock-metamorphosed zircon in terrestrial impact craters. Meteorit Planet Sci 454:433–454

    Article  Google Scholar 

  86. Zappala V, Cellino A, Gladman BJ, Manley S, Migliorini F (1998) Asteroid showers on Earth after family breakup events. Icarus 134:176–179

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation (CFI) grants to McFarlane and Spray. We thank Brandon Boucher for assistance in the Laser Ablation lab at UNB and Tom Cole for providing the topographic data. An earlier version of this work was improved by thoughtful and constructive reviews from James Darling, an anonymous reviewer, and Editor Daniela Rubatto. Planetary and Space Science Centre contribution 160.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maree McGregor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Daniela Rubatto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 241 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGregor, M., Dence, M.R., McFarlane, C.R.M. et al. U–Pb geochronology of apatite and zircon from the Brent impact structure, Canada: a Late Ordovician Sandbian–Katian boundary event associated with L-Chondrite parent body disruption. Contrib Mineral Petrol 175, 63 (2020). https://doi.org/10.1007/s00410-020-01699-9

Download citation

Keywords

  • Brent impact structure
  • LA-ICP-MS
  • U–Pb geochronology
  • Apatite
  • Zircon
  • Impact-induced recrystallization and phase precipitation
  • L-Chondrite parent body
  • Late Ordovician